
AutoTSMM: An Auto-tuning Framework for
Building High-Performance Tall-and-Skinny
Matrix-Matrix Multiplication on CPUs

Chendi Li∗†, Haipeng Jia∗§, Hang Cao∗†, Jianyu Yao∗†, Boqian Shi‡,
Chunyang Xiang∗, Jinbo Sun∗†, Pengqi Lu∗†, Yunquan Zhang∗
∗Institute of Computing Technology, Chinese Academy of Sciences

†University of Chinese Academy of Sciences
‡Indiana University Bloomington

Abstract—In recent years, general matrix-matrix multiplica-
tion with non-regular-shaped input matrices has been widely
used in many applications like deep learning and has drawn more
and more attention. However, conventional implementations are
not suited for non-regular-shaped matrix-matrix multiplications,
and few works focus on optimizing tall-and-skinny matrix-
matrix multiplication on CPUs. This paper proposes an auto-
tuning framework, AutoTSMM, to build high-performance tall-
and-skinny matrix-matrix multiplication. AutoTSMM selects the
optimal inner kernels in the install-time stage and generates an
execution plan for the pre-pack tall-and-skinny matrix-matrix
multiplication in the runtime stage. Experiments demonstrate
that AutoTSMM achieves competitive performance comparing
to state-of-the-art tall-and-skinny matrix-matrix multiplication.
And, it outperforms all conventional matrix-matrix multiplication
implementations.

Index Terms—Matrix-matrix multiplication, Auto-tune, Tall-
and-skinny matrix, CPU optimization, Runtime

I. INTRODUCTION

General matrix-matrix multiplication(GEMM) is the heart

of the Basic Linear Algebra Subprograms(BLAS). It is widely

used in scientific computing, deep learning, statistics, and

many other domains. Many vendors and communities already

optimized GEMM on various platforms. There are many open-

source implementations including ATLAS[8], OpenBLAS[6],

BLIS[3] and Eigen[12]. Meanwhile, some vendor libraries

like Intel MKL(i.e. OneAPI)[7], ARMPL[9], AOCL[10] and

ROCM[11] are provided on the specific platform. The formula

of GEMM as follows, where A, B and C are the input matrices

with the size of m× k, k×n, and m×n, respectively, α and
β are scalar numbers, C is the output matrix,

C = αAB + βC (1)

Conventional GEMM implementations are targeting regular-

shaped matrices(i.e., m and n are relatively large while k

may be moderate). However, the input sizes vary in different

applications, and the input sizes are usually non-regular-

shaped. So, optimization of non-regular-shaped GEMM has

also drawn a lot of attention.

§Haipeng Jia is corresponding author.

Tall-and-skinny matrix-matrix multiplication(TSMM) is ex-

tensively used in applications like deep learning[4, 5]. TSMM

means one of the input matrices(A or B) is a tall-and-skinny

matrix(one dimension is significantly smaller than another

one). Many works have been done on TSMM. For example,

Intel MKL provides highly optimized TSMM on the X86

platform[13], Facebook already optimized TSMM on X86

processors in their data centers[5], TSM2[1] and TSM2X[2]

discussed the TSMM optimization on NVIDIA GPUs. How-

ever, TSMM has not been fully discussed, and few works have

been done to optimize TSMM on different CPUs. Intel MKL

provides high-performance TSMM on the X86 platform, but

no TSMM implementation is available on other modern CPU

architectures.

Matrix-matrix multiplications on CPUs are divided into

two operations: packing operation and computing operation.

The packing operation performs a tiled algorithm that makes

memory access continuous during the computation, and the

performance can benefit from cache locality. The overhead

of packing operation is negligible when computing regular-

shaped GEMM because it can be amortized in the com-

puting operation. But conventional GEMM implementations

can only achieve sub-optimal performance when computing

non-regular-shaped matrix-matrix multiplications like TSMM,

because the packing operation cannot fully be amortized. In

addition, matrix data reuse is needed in deep learning, but

conventional GEMM implementations cannot reuse matrices

because the packing operation and computing operation are

coupled. As a result, a pre-pack TSMM is necessary, and

the AutoTSMM packs the input matrices before execution,

it makes data available for reuse.

In this paper, we analyze the performance issues with

conventional GEMM implementations on computing TSMM.

And we propose a novel tiled algorithm and develop a

portable auto-tuning framework, AutoTSMM, for building

high-Performance TSMM on mainstream CPUs. AutoTSMM

selects the optimal inner kernels in the install-time stage and

generates an execution plan in the runtime stage. AutoTSMM

makes high-Performance TSMM available on mainstream

CPUs like X86 platforms and ARMv8 platforms. In addition,

159

2021 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable
Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom)

978-0-7381-2646-3/21/$31.00 ©2021 IEEE
DOI 10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00034

Fig. 1: Overview of AutoTSMM

we focus on the optimization of inner kernels on ARMv8

platforms to achieve high performance. Experiments show

that our work is comparable with state-of-the-art TSMM

implementation and get an average speedup from 2.3x to 21.7x

comparing to conventional GEMM implementations.

The main contributions of this paper are summarized as

follows:

• We analyze the shortcomings of the conventional GEMM
implementations on computing TSMM and propose

a novel tiled strategy to implement high-performance

TSMM on CPUs.

• We design an auto-tuning framework, AutoTSMM, for
building high-Performance TSMM on all mainstream

CPUs. And the performance is competitive with state-

of-the-art TSMM implementation from Intel MKL and

outperforms all conventional GEMM implementations on

X86 and ARMv8 platforms.

• We analyze the poor performance of TSMM on the

ARMv8 platform and implement high-performance as-

sembly inner kernels on the ARMv8 platform.

We introduce the background of our works in section 2. Au-

toTSMM is introduced in section 3. In section 4, we describe

the implementation and optimization of the AutoTSMM on

CPUs. We evaluate the performance in section 5 and conclude

this paper in section 6.

II. BACKGROUND

A. Conventional GEMM Implementations

GEMM is fully optimized in the last decades[14–18], but

most of the implementations target regular-shaped matrices,

e.g., large and square matrices. The tiled matrix multiplication

algorithm[19] packs a small block of the whole A and B

matrix and then computes the two small blocks of A and B by

the highly optimized small-scale GEMM called inner kernels.

These inner kernels are usually written in assembly code. The

conventional GEMM implementations are effective when the

input matrices are both regular-shaped. Usually, conventional

GEMM implementations will get a near-peak performance

above 90% of the theoretical peak performance with regular-

shaped input.

B. Neural Networks, Convolution and Im2col

Neural networks(NNs)[26] are the foundations of deep

learning. In deep learning frameworks like TensorFlow and

OneDNN, most running time is spending on convolution

layers[20, 21]. So it is important to optimize convolution and

many works have been done.

For example, the image to column (Im2col)[22] is one

of the most popular algorithms for optimizing convolution.

Im2col transforms the convolution to GEMM to utilize the

fully optimized BLAS libraries. Non-regular-shaped GEMM

like TSMM is common in real-world deep learning applica-

tions, because the convolutional kernels are usually small-

scale, and the input images are large-scale, and both of

them need to be reused multiple times. Unfortunately, the

conventional GEMM implementations are only optimized for

regular-shaped GEMM and do not support data reuse.

C. The Pre-Pack TSMM

TSMM is one of the most important non-regular-shaped

matrix-matrix multiplications. To our knowledge, A is a large

square matrix, and B is a tall-and-skinny matrix that can cover

most needs of deep learning applications[1, 5]. For example,

matrix A is the size of 20480 × 20480, and matrix B is the
size of 20480 × 16. Conventional GEMM implementations

cannot reuse data, but data reuse is a key factor to optimize

TSMM in real-world deep learning applications. The pre-pack

TSMM reduces the packing overhead in conventional GEMM

implementations, and fulfills the need for data reuse by pre-

packing the input matrices to a permanent memory address.

Our works focus on optimizing the pre-pack TSMM on

CPUs, and it can benefit numerical libraries like NumPy[23]

for speeding up convolution layers in deep learning frame-

works.

III. AUTO-TUNING FRAMEWORK

We introduce the auto-tuning framework of TSMM, Au-

toTSMM, in this section. AutoTSMM is divided into the

160

install-time stage and the runtime stage. It is responsible

for selecting the best inner kernels in the install-time stage

and generating the execution plan in the runtime stage. The

workflow of the AutoTSMM shows in Fig.1.

In the install-time stage, the assembly kernel selector selects

the optimal kernel based on the experiences. In the runtime

stage, the AutoTSMM designs the tiled algorithm based on the

cache sizes, inner kernels and the number of threads. Finally,

the AutoTSMM selects an execution plan on target CPUs to

compute TSMM.

AutoTSMM assembled into the cache blocked designer,

multi-thread optimizer, pre-pack module and performance

evaluator in the runtime stage.

The cache blocked designer receives hardware features like

the cache hierarchy and the cache sizes. It generates the

cache blocked strategy based on the hardware features and

the inner kernel sizes. We design a predictive model based on

our optimization experiences, it searches the tuning space and

creates the cache blocked strategy.

The multi-thread optimizer receives the cache blocked strat-

egy and generates the multi-thread strategy. The strategies

are applied to the pre-pack module and measured by the

performance evaluator. Note that, the number of threads on

n-dimension is one of the most important factors for optimiz-

ing multi-threaded TSMM, because the n-dimension is much

smaller than other dimensions, and assigns too many threads

on n-dimension is not a good idea. So, it should be careful to

deal with the multi-threading on n-dimension.

The pre-pack module packs input matrices before comput-

ing the TSMM. AutoTSMM applies the cache blocked strategy

and the multi-thread strategy to the pre-pack module. And the

performance is measured by the performance evaluator.

The performance evaluator is responsible for measuring

the performance of the pre-pack module and generating the

execution plan. It receives the cache blocked strategy and

the multi-thread strategy. After measuring the performance of

the strategies, the AutoTSMM selects an execution plan to

compute the TSMM.

Since a bunch of data reuse is needed in real-world appli-

cations like deep learning, AutoTSMM certainly benefits the

performance of pre-pack TSMM, because the execution plan

will be repeatedly executed and the overhead of AutoTSMM

will be negligible.

IV. IMPLEMENTATION AND OPTIMIZATION

We design a tiled algorithm[14, 19] for the pre-pack TSMM

and focus on the optimization of the AutoTSMM in this

section. Algorithm.1 shows the workflow of the pre-pack

TSMM. The AutoTSMM pre-packs the input matrices into

a continuous memory, and then it performs the computing

operation to compute the TSMM.

A. The Runtime Tiled Algorithm

Since the most difference between regular-shaped GEMM

and the TSMM is the length of n-dimension, the tiled al-

gorithm of the TSMM mainly focuses on optimizing the

Algorithm 1: Workflow of the pre-pack TSMM
Input: matrices :A, B and C, scalar number: M , N ,

K, α and β, temporary memory address:
DESTA and DESTB

Output: C = αA×B + βC
Function PACKA(α, SRCA,DESTA):

SRCA = αSRCA;
for jc = 0 ; jc < K ; jc+ = kc do

for ic = 0 ; ic < M ; ic+ = mc do
for it = 0 ; it < mc ; it+ = mt do

Pack a block of αSRCA to DESTA;

Function PACKB(α, SRCB,DESTB):
SRCB = αSRCB;
for jc = 0 ; jc < K ; jc+ = kc do

for ic = 0 ; ic < N ; ic+ = nc do
Pack a block of αSRCB to DESTB;

Function COMPUTE(β,C,DESTA,DESTB):
do in parallel

C = βC;
for jc = 0 ; jc < K ; jc+ = kc do

load a block αAc from DESTA
for ic = 0 ; ic < M ; ic+ = mc do

for it = 0 ; it < mc ; it+ = mt do
for kc = 0 ; kc < N ; kc+ = nc do

load a block Bc from DESTB;
Cc = αAc ×Bc + βCc;

// main function for computing pre-pack TSMM

Function TSMM(α, β,A,B,DESTA,DESTB):
// pack αA to memory address DESTA

PACKA(α,A,DESTA);
// pack B to memory address DESTB

PACKB(1, B,DESTB);
// compute C = αA×B + βC

COMPUTE(β,C,DESTA,DESTB);
return C;

cache blocked sizes and the multi-threading on n-dimension.

We design a tiled algorithm for TSMM and the details are

illustrated in Fig.2.

1) Cache blocked designer: GEMM is a cache-oblivious

algorithm on CPUs, thus, cache blocked sizes are one of the

key factors for optimizing GEMM on modern CPUs. The

tiled blocks are selected to fit in L1 cache and L2 cache.

For example, assuming we have a mc × kc sub-matrix A and
a kc × nc sub-matrix B, the best performance of TSMM is

achieved most likely when mc × kc is about half the size of
L2 cache and kc×nc is equal to the size of L1 cache. Thus, the

block sizes are limited by Eq.2 and Eq.3 follows. Note that,

the nc, mc and kc are the block sizes that suit for cache sizes,
and nr, mr and kr are the block sizes that suit for register

161

Fig. 2: Tiled Algorithm for the Tall-and-Skinny Matrix-Matrix Multiplication. TSMM is transformed to GEPB(panel-block multiplication),
wheremt is block height assigned for one thread, kc is the block width suit for L2 cache size. Since n is usually from single digits to hundreds
of digits and is significantly smaller than m and k, the n-dimensional tiling algorithm will not be executed when n ≤ nc. GEPB is transformed
to GEPBt(panel-block-multiplication by threads), where mc is block height suit for L2 cache size, finally GEBBt(block-block-multiplication
by threads) is computed as a unit by inner kernels.

sizes.

We design a runtime predictive model to auto-tune TSMM

based on the user input sizes. The predictive model based on

Eq.2 and Eq.3, it is responsible for generating the parameters

of the tiled algorithm. The search patterns depend on the

selected inner kernel and the input. For example, as for 8× 4
kernel, one of the search pattern searches the optimal param-

eters moptimal in [mc–8x,mc] and koptimal in [kc − 4x, kc]
according to Eq.2 and Eq.3. And, another search pattern set

the optimal parameters moptimal and koptimal equal to the

largest power of two restricted by Eq.2 and Eq.3. Finally, the

performance evaluator chooses the execution plan created by

the cache blocked designer and the multi-thread optimizer.

kc × nc ≤ L1cache

FPsize
(2)

mc × kc ≤ L2cache

2× FPsize
(3)

2) Multi-thread optimizer: The conventional GEMM im-

plementations usually assume the length of n is equal to m, and

it will assign the number of threads according to a fixed param-

eter, thus, conventional GEMM implementations may over-

assign threads on n-dimension when computing TSMM. And

the over-assignment causes too much thread synchronization

overhead and significantly affects multi-threaded performance

on computing TSMM.

Meanwhile, the TSMM tiled algorithm in Fig.2 has not di-

vided into slices size intomc×nt and are computed by GEBBt

instead of computed by GEBPt (block-panel-multiplication

by threads) in conventional GEMM implementations. When

computing TSMM, divide the n-dimension into slices like

conventional GEMM implementations is not a good idea. This

is because n is too small and the blocked sub-panel of matrix
B hold by single-thread is much smaller than L1 cache size,

so the L1 data cache cannot be fully utilized. AutoTSMM

will not divide n-dimension when n ≤ nc, and ensure every

CPU core holds a block of matrix B in GEBBt and keep it in

the private L1 data cache. Compare to conventional GEMM

implementations, this is a good approach to fully utilize the

L1 data caches when computing TSMM.

In addition, the packing operation in conventional GEMM

implementations allocates temporary space to store continuous

panels or blocks of matrix. To prevent the temporary space

from being overwritten by the multi-threading packing opera-

tion, each thread stall until all threads finish the GEBPs, then

threads continue to iterate on the K dimension. As for the

pre-pack TSMM, each thread can directly compute the tiled

matrix-matrix multiplication without thread synchronization,

because every block has been packed into a new memory

address. The pre-pack TSMM is a trade-off, but it is effective

when the data is reused.

Fig. 3: Workload of The Pre-Pack Module

3) Pre-pack TSMM module: The packing operation is re-
sponsible for re-arranging the input matrices to reduce the

L1 cache misses. As shown in section 5, the packing time

is really large when computing TSMM, so it is important to

implement the pre-pack TSMM for data reuse. The workload

of the pre-pack module and the memory diagram of the packed

matrix are illustrated in Fig.3. We optimize the memory access

to minimize the cache misses for each thread. The pre-pack

TSMM module copies a block of the input matrix to a new

memory address and makes the memory access continuous

when computing GEBBt by inner kernels. As shown in Fig.3,

the input matrices are packed into the new continuous memory,

and the headers keep the pointers to the address of every

block assigned to the threads. Note that, the blocks in Fig.3

represents the GEBBt in the TSMM tiled algorithm. And,

162

the sizes of the blocks are determined by the cache blocked

designer.

4) Cache miss analysis for pre-pack TSMM: Cache

complexity[24] is suitable for analyzing the cache miss rate.

To simplify the analysis, we assume all the matrices are stored

by column-major, and mc = nc = kc = b, m = n = k = n,
the cache size is Z and the cache is divided into cache-lines of

size L. And T is the number of threads. Note that, this is not an

accurate analysis for TSMM, but it shows how the reduction

of cache complexity occurs in pre-pack TSMM. Based on the

analysis from [25]. Targeting on computing the basic 3-nested

loop GEMM, we compute L elements of C will spend n2/L
times, and it will cause n cache misses each time, thus, the

cache complexity of basic 3-nested loop GEMM is:

O(n3/L) (4)

As for matrix tiling in conventional GEMM implementa-

tions(i.e. blocking GEMM), loading three b × b blocks in
cache cost 3b2/L for n3/b3 times. This leads to 3n3/(bL)
cache misses. And three blocks must fit in cache for best

performance: 3b2 < Z. So the cache complexity of block
GEMM is:

O(3
√
3n3/(L

√
Z)) (5)

As for pre-pack TSMM, assume we pre-pack matrix A,

when the computing operations are called, loading A into the

cache will only cause b × b cache misses when the first sub-
matrix A is loaded into the cache. It will cause b2/L cache

misses for every thread, and loading blocks from B and C cost

2b2/L for n3/b3 times, and we already get 3b2 < Z. So the
cache complexity of computing pre-pack TSMM is:

O(ZT/(3L) + 2
√
3n3/(L

√
Z)) (6)

According to Eq.5 and Eq.6, and comparing to conventional

GEMM implementations, pre-pack TSMM reduces the cache

misses caused by packing operation. And the performance is

benefits from the data rearrangement and the data reuse.

B. The Install-time GEMM Kernels Optimization

Fig. 4: GEBBt Computed by Inner Kernels. The inner kernel perform
a slice-times-slice matrix-matrix multiplication(mr and nr are the
sizes suit for register blocking).

Fig.4 shows how to compute GEBBt by inner kernels.

Since the inner kernels on the X86 platforms have been fully

optimized, We reuse the inner kernels on X86 platforms to

implement the AutoTSMM. However, the inner kernels on

ARMv8 platforms have not been fully optimized and the

existing ARMv8 16 × 4 and 8 × 4 inner kernels cannot

achieve high-performance. Meanwhile, the flaws on Kunpeng

920 make the existing inner kernels can only achieve sub-

optimal performance. Thus, we focus on the optimization of

assembly inner kernels on Kunpeng 920 and try to figure out

how to improve the poor performance caused by the instruction

issue flaws.

Kunpeng 920 platform has two fused multiply-add (FMA)

units, ideally, peak performance is achieved when two FMA

instructions and one or more load instructions are issued every

cycle. However, Kunpeng 920 can only issue two single-

precision FMA instructions per cycle or issue one FMA

instruction and one load instruction per cycle. Thus, the peak

performance of Kunpeng 920 is limited by the memory access

instructions(i.e., load instructions).

As discussed above, the FMA instructions cannot overlap

the load instructions on Kunpeng 920, so we have to minimize

the percentage of the load instructions when implementing the

inner kernels. Kunpeng 920 has 32 SIMD register files, we

assume the inner kernel size is mr×nr, we implement 12×8,
16×4 and 8×4 kernels on Kunpeng 920 platform. The 12×8
inner kernel has the largest FMA instructions ratio 92.3%, so

it is the optimal inner kernel. This rule is not suited for X86

CPUs because the flaws are only found in Kunpeng 920. In

addition, the 12× 8 inner kernel can output more elements of
matrix C than the 16× 4 inner kernel at a time, which means
that its utilization of registers is higher. Now we introduce the

details of 12× 8 inner kernel optimization on Kunpeng 920.

1) The register blocking: There are 32 SIMD vector reg-
isters on Kunpeng 920 platform, as for 12 × 8 inner kernel,
we use V0, V1 and V6, V7 to store the matrix A, V2-V5 are

used for storing matrix B, V8-V31 are used for storing matrix

C. Only V6-V7 are used exclusively, other registers are used

for register renaming.

2) Reorder instructions and loop unrolling: The Kunpeng
920 cannot fulfill the pipeline, so we reorder instructions and

let the FMA instructions and load instructions are spaced

farther apart to avoid pipeline hazards. We assemble the inner

kernels by KERNEL M1, KERNEL M2. This is a ping-pong

strategy, which is an effective way to build inner kernels. It

means KERNEL M1 loads the data for KERNEL M2, and

KERNEL M2 also loads the data for KERNEL M1. We use

loop-unrolling on k-dimension by repeatedly calling KER-

NEL M1 and KERNEL M2 to make the pipeline throughput

higher.

3) Prefetch from the cache: The prefetch instructions are
also used for optimization. We insert the prefetch instructions

between floating-point instructions, as for 12 × 8 kernel, it
prefetches 5120 bytes, 448 bytes and 320 bytes for matrix A,

B and C, respectively. Prefetching seems likely to be a hand-

writing optimization on target machines.

163

V. PERFORMANCE EVALUATION

This section shows the experimental results on X86 and

ARMv8 platforms. We compare the performance of Au-

toTSMM on computing single-precision TSMM (STSMM)

and double-precision TSMM (DTSMM) with state-of-the-art

implementations. Table 1 shows the experimental environ-

ments.

TABLE I: Experimental Environments

CPU Kunpeng 920 Xeon E5-2640 v4

Arch. ARMv8.2 Broadwell-EP
Freq. 2.6GHz 2.4 GHz
SIMD 128 bits 256 bits

L1D cache 4 MiB 320 KiB
L2 cache 32 MiB 2.5 MiB
L3 cache 64 MiB 25 MiB
Compiler GCC7.5 GCC7.5
Intel MKL - 2021.2.0
ARMPL 21.0 -
BLIS 0.81 0.81

OpenBLAS 0.3.13 0.3.13

We assume that matrix A is a large square matrix, and ma-

trix B is a tall-and-skinny matrix. Note that, we choose these

test cases because we believe they can show the challenge

in optimizing TSMM. The performance evaluation computes

TSMM 200 times, andM = K = 25600, referring to previous
works like MKL[13] and TSM2[1], we believe these test

cases are reasonable for comparing the performance of the

TSMM. The performance of the AutoTSMM framework is

labeled AutoTSMM, The performance of Intel MKL TSMM

modules is labeled MKL-TSMM. The conventional GEMM

implementations’ performances are represented by the BLAS

library name plus “sgemm” or “dgemm”, where “sgemm”

represents single-precision GEMM(SGEMM), and “dgemm”

represents double-precision GEMM(DGEMM). We use Eq.7

for measuring the performance. Notice that, the packing time

is ignored.

GFlops =
2×M ·N ·K × 10−9

t
(7)

A. Targeting on Intel Xeon

Fig.5 shows the packing time taken on the X86 and ARMv8

platforms. When n is very small, the percentage of the packing

time is very large, reaching 90% and 75%, respectively. With

the increase of n, the percentage of the packing time gradually

decreases. When N = 240, the percentage of packing time on
the X86 platform is about 20%, and on the ARMv8 platform

is 3%. In a word, when the length of N is small, the packing

time is the main overhead, as the length of N increases, the

packing time takes up less.

Fig.6 shows the performance comparison on X86 platforms.

Xeon E5-2640 v4 has 10 cores with 20 threads, so it has

1536 GFlops peak performance for single-precision and 768

GFlops for double-precision. The performance of AutoTSMM

can achieve 78.9% of single-precision peak performance along

with 76.7% of the double-precision peak performance at most.

AutoTSMM can achieve 115.2% and 105.1% of the Intel

MKL-TSMM on computing STSMM and DTSMM, respec-

tively. We believe the reason why DTSMM performance is

not as good as STSMM is that the Intel MKL implements the

inner kernels with a larger loop-unrolling on K-dimension.

And the conventional GEMM implementations cannot com-

pete with AutoTSMM and MKL-TSMM. On the X86 plat-

form, AutoTSMM achieves 1.63x, 2.38x and 3.19x average

speedup comparing to MKL-sgemm, OpenBLAS-sgemm and

BLIS-sgemm, respectively. And it achieves 1.53x, 3.27x and

2.87x comparing to MKL-dgemm, OpenBLAS-dgemm and

BLIS-dgemm, respectively.

In addition, when N = 240, the packing time taken is less
than 20% and 3% on X86 and ARMv8 platforms, respec-

tively, AutoTSMM can still achieve 30% to 162% acceleration

compared to conventional implementations. Therefore, we can

conclude that our tiled algorithm works well.

From the curves in Fig.5 and Fig.6, we can conclude:

1) AutoTSMM and MKL-TSMM reduce the packing time

by pre-pack operation and achieve a significant perfor-

mance improvement by the data reuse.

2) Our runtime tiled algorithm is effective, and it out-

performs the Intel MKL on computing STSMM

and achieves competitive performance on computing

DTSMM.

3) AutoTSMM brings a significant speedup comparing to

conventional GEMM implementations.

B. Targeting on Kunpeng

Fig. 8: The SGEMM Performances on ARMv8 CPUs

Figure 8 shows the single-thread SGEMM performance

comparison on Kunpeng 920. When the matrix size is small,

our 12 × 8 inner kernel is not as good as OpenBLAS

16 × 4 inner kernel, as the scale increases, our implemen-
tation can achieve higher peak performance. The single-core

peak performance of Kunpeng 920 is 41.6 GFlops, and our

implementations can reach 92.2% of the peak performance.

164

Fig. 5: The Percentage of the Packing Operation Time in Conventional GEMM Implementation on X86 and ARMv8 CPUs

Fig. 6: The TSMM Performances on X86 CPUs

Fig. 7: The TSMM Performances on ARMv8 CPUs

165

Our 12 × 8 inner kernel has 1.35x, 1.12x and 3.05x peak
performance speedup comparing to OpenBLAS, ARMPL and

BLIS, respectively. It proves that our optimization of the inner

kernels on Kunpeng 920 is effective.

Figure 7 shows the performance comparison between Au-

toTSMM and other implementations on Kunpeng 920. Since

there is no open-source or vendor-provided TSMM implemen-

tation on the ARMv8 platforms to our knowledge, we compare

the AutoTSMM with the conventional GEMM implementa-

tions. The performance of AutoTSMM is significantly better

than the existing GEMM implementations on the ARMv8

platform.

On the ARMv8 platform, AutoTSMM achieves an average

acceleration ratio from 2.3x to 21.7x and 2.9x to 15.1x

compared to conventional SGEMM and DGEMM implemen-

tations, respectively. We believe that there are two reasons. On

the one hand, the existing multi-threaded GEMM implemen-

tations are not specifically optimized for the TSMM. On the

other hand, our inner kernels are fully optimized to achieve

higher performance on Kunpeng 920.

In addition, the existing GEMM implementations do not

have a runtime auto-tune process, while AutoTSMM generates

the execution plan for better performance. AutoTSMM allows

developers to avoid manual tuning and auto-tune for the input

sizes, which is one of the most advantages. AutoTSMM is

located on the upper layer of the specific architecture, as

long as the inner kernels are highly optimized, the high-

performance TSMM will surely be achieved on AVX-512

machines and other platforms.

VI. CONCLUSION

This paper focuses on the implementation and optimiza-

tion of the auto-tuning framework, AutoTSMM, on X86 and

ARMv8 platforms. We can conclude that AutoTSMM is a

portable auto-tuning framework to build the high-performance

TSMM on mainstream CPUs. When new architecture arrives,

the developer does not need to know every detail of the

optimization of the TSMM. The only required is the inner

kernels on target machines. Thus, the AutoTSMM significantly

reduces the effort to apply high-performance TSMM to new

platforms. The limitation of AutoTSMM is the number of

data reuses. If the number of data reuses is less, then the

improvement brought by AutoTSMM will be less obvious.

ACKNOWLEDGMENT

We would like to express our gratitude to all reviewer’s

constructive comments for helping us polish this article. This

work is supported by the National Key Research and Develop-

ment Program of China under Grant Nos. 2017YFB0202105,

the National Natural Science Foundation of China under Grant

No. 61972376 and the Natural Science Foundation of Beijing

under Grant No. L182053.

REFERENCES

[1] Chen, Jieyang, et al. TSM2: optimizing tall-and-skinny matrix-matrix
multiplication on GPUs. Proceedings of the ACM International Confer-
ence on Supercomputing. 2019.

[2] Rivera C, Chen J, Xiong N, et al. TSM2X: High-performance tall-and-
skinny matrix-matrix multiplication on GPUs[J]. Journal of Parallel and
Distributed Computing, 2021, 151: 70-85.

[3] Van Zee F G, Van De Geijn R A. BLIS: A framework for rapidly
instantiating BLAS functionality[J]. ACM Transactions on Mathematical
Software (TOMS), 2015, 41(3): 1-33.

[4] Georganas E, Avancha S, Banerjee K, et al. Anatomy of high-
performance deep learning convolutions on simd architectures[C]//SC18:
International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 2018: 830-841.

[5] Park J, Naumov M, Basu P, et al. Deep learning inference in facebook
data centers: Characterization, performance optimizations and hardware
implications[J]. arXiv preprint arXiv:1811.09886, 2018.

[6] Xianyi, Zhang, Wang Qian, and Zhang Yunquan. Model-driven level 3
BLAS performance optimization on Loongson 3A processor. 2012 IEEE
18th international conference on parallel and distributed systems. IEEE,
2012.

[7] “Accelerate Fast Math with Intel® oneAPI Math Kernel Library.”
https://software.intel.com/content/www/us/en/develop/tools/oneapi/comp
onents/onemkl.html

[8] ATLAS C, Yamamoto S, Shapiro M, et al. The simulation principle and
performance of the ATLAS fast calorimeter simulation FastCaloSim[R].
ATL-COM-PHYS-2010-838, 2010.

[9] “Arm Compiler for Linux — Commercial ArmPL: Get started – Arm
Developer.” https://developer.arm.com/tools-and-software/server-and-
hpc/compile/arm-compiler-for-linux/resources/get-started/armpl-get-
started

[10] “AMD Optimizing CPU Libraries (AOCL) - AMD.”
https://developer.amd.com/amd-aocl/

[11] “AMD ROCm Open Software Platform — AMD.”
https://www.amd.com/en/graphics/servers-solutions-rocm

[12] “Eigen.” https://eigen.tuxfamily.org/index.phptitle=Main Page
[13] “Unleash The Power Of Big Data Analytics And Machine Learning.”

https://www.codeproject.com/Articles/1151600/Unleash-The-Power-Of-
Big-Data-Analytics-And-Machin

[14] Smith T M, Van De Geijn R, Smelyanskiy M, et al. Anatomy of high-
performance many-threaded matrix multiplication[C]//2014 IEEE 28th
International Parallel and Distributed Processing Symposium. IEEE,
2014: 1049-1059.

[15] Kim R, Choi J, Lee M. Optimizing parallel GEMM routines using
auto-tuning with Intel AVX-512[C]//Proceedings of the International
Conference on High Performance Computing in Asia-Pacific Region.
2019: 101-110.

[16] Lim R, Lee Y, Kim R, et al. Auto-tuning GEMM kernels on the Intel
KNL and Intel Skylake-SP processors[J]. The Journal of Supercomput-
ing, 2019, 75(12): 7895-7908.

[17] Goto K, Geijn R A. Anatomy of high-performance matrix multiplica-
tion[J]. ACM Transactions on Mathematical Software (TOMS), 2008,
34(3): 1-25.

[18] Kågström B, Ling P, Van Loan C. GEMM-based level 3 BLAS:
high-performance model implementations and performance evaluation
benchmark[J]. ACM Transactions on Mathematical Software (TOMS),
1998, 24(3): 268-302.

[19] Buttari A, Langou J, Kurzak J, et al. A class of parallel tiled linear
algebra algorithms for multicore architectures[J]. Parallel Computing,
2009, 35(1): 38-53.

[20] Jia Y. Learning semantic image representations at a large scale[D]. UC
Berkeley, 2014.

[21] “Why GEMM is at the heart of deep learning”
https://petewarden.com/2015/04/20/why-gemm-is-at-the-heart-of-
deep-learning/

[22] Chellapilla K, Puri S, Simard P. High performance convolutional neural
networks for document processing[C]//Tenth International Workshop on
Frontiers in Handwriting Recognition. Suvisoft, 2006.

[23] Van Der Walt S, Colbert S C, Varoquaux G. The NumPy array: a
structure for efficient numerical computation[J]. Computing in science
& engineering, 2011, 13(2): 22-30.

[24] Frigo M, Strumpen V. The cache complexity of multithreaded cache
oblivious algorithms[J]. Theory of Computing Systems, 2009, 45(2):
203-233.

[25] “Cache-Aware Analysis of Algorithms” https://www.cse.wustl.edu/ an-
gelee/archive/cse341/fall14/handouts/recitation03.pdf

[26] Cao W, Wang X, Ming Z, et al. A review on neural networks with
random weights[J]. Neurocomputing, 2018, 275: 278-287.

166

