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Abstract—In recent years, general matrix-matrix multiplica-
tion with non-regular-shaped input matrices has been widely
used in many applications like deep learning and has drawn more
and more attention. However, conventional implementations are
not suited for non-regular-shaped matrix-matrix multiplications,
and few works focus on optimizing tall-and-skinny matrix-
matrix multiplication on CPUs. This paper proposes an auto-
tuning framework, AutoTSMM, to build high-performance tall-
and-skinny matrix-matrix multiplication. AutoTSMM selects the
optimal inner kernels in the install-time stage and generates an
execution plan for the pre-pack tall-and-skinny matrix-matrix
multiplication in the runtime stage. Experiments demonstrate
that AutoTSMM achieves competitive performance comparing
to state-of-the-art tall-and-skinny matrix-matrix multiplication.
And, it outperforms all conventional matrix-matrix multiplication
implementations.

Index Terms—Matrix-matrix multiplication, Auto-tune, Tall-
and-skinny matrix, CPU optimization, Runtime

I. INTRODUCTION

General matrix-matrix multiplication(GEMM) is the heart
of the Basic Linear Algebra Subprograms(BLAS). It is widely
used in scientific computing, deep learning, statistics, and
many other domains. Many vendors and communities already
optimized GEMM on various platforms. There are many open-
source implementations including ATLAS[8], OpenBLAS[6],
BLIS[3] and Eigen[12]. Meanwhile, some vendor libraries
like Intel MKL(i.e. OneAPI)[7], ARMPL[9], AOCL[10] and
ROCM][11] are provided on the specific platform. The formula
of GEMM as follows, where A, B and C are the input matrices
with the size of m x k, k x n, and m x n, respectively, o and
[ are scalar numbers, C is the output matrix,

C =aAB+ C ey

Conventional GEMM implementations are targeting regular-
shaped matrices(i.e., m and n are relatively large while k
may be moderate). However, the input sizes vary in different
applications, and the input sizes are usually non-regular-
shaped. So, optimization of non-regular-shaped GEMM has
also drawn a lot of attention.

§Haipeng Jia is corresponding author.
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Tall-and-skinny matrix-matrix multiplication(TSMM) is ex-
tensively used in applications like deep learning[4, 5]. TSMM
means one of the input matrices(A or B) is a tall-and-skinny
matrix(one dimension is significantly smaller than another
one). Many works have been done on TSMM. For example,
Intel MKL provides highly optimized TSMM on the X86
platform[13], Facebook already optimized TSMM on X86
processors in their data centers[5], TSM2[1] and TSM2X][2]
discussed the TSMM optimization on NVIDIA GPUs. How-
ever, TSMM has not been fully discussed, and few works have
been done to optimize TSMM on different CPUs. Intel MKL
provides high-performance TSMM on the X86 platform, but
no TSMM implementation is available on other modern CPU
architectures.

Matrix-matrix multiplications on CPUs are divided into
two operations: packing operation and computing operation.
The packing operation performs a tiled algorithm that makes
memory access continuous during the computation, and the
performance can benefit from cache locality. The overhead
of packing operation is negligible when computing regular-
shaped GEMM because it can be amortized in the com-
puting operation. But conventional GEMM implementations
can only achieve sub-optimal performance when computing
non-regular-shaped matrix-matrix multiplications like TSMM,
because the packing operation cannot fully be amortized. In
addition, matrix data reuse is needed in deep learning, but
conventional GEMM implementations cannot reuse matrices
because the packing operation and computing operation are
coupled. As a result, a pre-pack TSMM is necessary, and
the AutoTSMM packs the input matrices before execution,
it makes data available for reuse.

In this paper, we analyze the performance issues with
conventional GEMM implementations on computing TSMM.
And we propose a novel tiled algorithm and develop a
portable auto-tuning framework, AutoTSMM, for building
high-Performance TSMM on mainstream CPUs. AutoTSMM
selects the optimal inner kernels in the install-time stage and
generates an execution plan in the runtime stage. AutoTSMM
makes high-Performance TSMM available on mainstream
CPUs like X86 platforms and ARMvS platforms. In addition,
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Fig. 1: Overview of AutoTSMM

we focus on the optimization of inner kernels on ARMvS
platforms to achieve high performance. Experiments show
that our work is comparable with state-of-the-art TSMM
implementation and get an average speedup from 2.3x to 21.7x
comparing to conventional GEMM implementations.

The main contributions of this paper are summarized as
follows:

o We analyze the shortcomings of the conventional GEMM
implementations on computing TSMM and propose
a novel tiled strategy to implement high-performance
TSMM on CPUs.

We design an auto-tuning framework, AutoTSMM, for
building high-Performance TSMM on all mainstream
CPUs. And the performance is competitive with state-
of-the-art TSMM implementation from Intel MKL and
outperforms all conventional GEMM implementations on
X86 and ARMVS platforms.

We analyze the poor performance of TSMM on the
ARMVvS platform and implement high-performance as-
sembly inner kernels on the ARMVS platform.

We introduce the background of our works in section 2. Au-
toTSMM is introduced in section 3. In section 4, we describe
the implementation and optimization of the AutoTSMM on
CPUs. We evaluate the performance in section 5 and conclude
this paper in section 6.

II. BACKGROUND
A. Conventional GEMM Implementations

GEMM is fully optimized in the last decades[14—18], but
most of the implementations target regular-shaped matrices,
e.g., large and square matrices. The tiled matrix multiplication
algorithm[19] packs a small block of the whole A and B
matrix and then computes the two small blocks of A and B by
the highly optimized small-scale GEMM called inner kernels.
These inner kernels are usually written in assembly code. The
conventional GEMM implementations are effective when the
input matrices are both regular-shaped. Usually, conventional
GEMM implementations will get a near-peak performance
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above 90% of the theoretical peak performance with regular-
shaped input.

B. Neural Networks, Convolution and Im2col

Neural networks(NNs)[26] are the foundations of deep
learning. In deep learning frameworks like TensorFlow and
OneDNN, most running time is spending on convolution
layers[20, 21]. So it is important to optimize convolution and
many works have been done.

For example, the image to column (Im2col)[22] is one
of the most popular algorithms for optimizing convolution.
Im2col transforms the convolution to GEMM to utilize the
fully optimized BLAS libraries. Non-regular-shaped GEMM
like TSMM is common in real-world deep learning applica-
tions, because the convolutional kernels are usually small-
scale, and the input images are large-scale, and both of
them need to be reused multiple times. Unfortunately, the
conventional GEMM implementations are only optimized for
regular-shaped GEMM and do not support data reuse.

C. The Pre-Pack TSMM

TSMM is one of the most important non-regular-shaped
matrix-matrix multiplications. To our knowledge, A is a large
square matrix, and B is a tall-and-skinny matrix that can cover
most needs of deep learning applications[1, 5]. For example,
matrix A is the size of 20480 x 20480, and matrix B is the
size of 20480 x 16. Conventional GEMM implementations
cannot reuse data, but data reuse is a key factor to optimize
TSMM in real-world deep learning applications. The pre-pack
TSMM reduces the packing overhead in conventional GEMM
implementations, and fulfills the need for data reuse by pre-
packing the input matrices to a permanent memory address.

Our works focus on optimizing the pre-pack TSMM on
CPUs, and it can benefit numerical libraries like NumPy[23]
for speeding up convolution layers in deep learning frame-
works.

III. AUTO-TUNING FRAMEWORK

We introduce the auto-tuning framework of TSMM, Au-
toTSMM, in this section. AutoTSMM is divided into the



install-time stage and the runtime stage. It is responsible
for selecting the best inner kernels in the install-time stage
and generating the execution plan in the runtime stage. The
workflow of the AutoTSMM shows in Fig.1.

In the install-time stage, the assembly kernel selector selects
the optimal kernel based on the experiences. In the runtime
stage, the AutoTSMM designs the tiled algorithm based on the
cache sizes, inner kernels and the number of threads. Finally,
the AutoTSMM selects an execution plan on target CPUs to
compute TSMM.

AutoTSMM assembled into the cache blocked designer,
multi-thread optimizer, pre-pack module and performance
evaluator in the runtime stage.

The cache blocked designer receives hardware features like
the cache hierarchy and the cache sizes. It generates the
cache blocked strategy based on the hardware features and
the inner kernel sizes. We design a predictive model based on
our optimization experiences, it searches the tuning space and
creates the cache blocked strategy.

The multi-thread optimizer receives the cache blocked strat-
egy and generates the multi-thread strategy. The strategies
are applied to the pre-pack module and measured by the
performance evaluator. Note that, the number of threads on
n-dimension is one of the most important factors for optimiz-
ing multi-threaded TSMM, because the n-dimension is much
smaller than other dimensions, and assigns too many threads
on n-dimension is not a good idea. So, it should be careful to
deal with the multi-threading on n-dimension.

The pre-pack module packs input matrices before comput-
ing the TSMM. AutoTSMM applies the cache blocked strategy
and the multi-thread strategy to the pre-pack module. And the
performance is measured by the performance evaluator.

The performance evaluator is responsible for measuring
the performance of the pre-pack module and generating the
execution plan. It receives the cache blocked strategy and
the multi-thread strategy. After measuring the performance of
the strategies, the AutoTSMM selects an execution plan to
compute the TSMM.

Since a bunch of data reuse is needed in real-world appli-
cations like deep learning, AutoTSMM certainly benefits the
performance of pre-pack TSMM, because the execution plan
will be repeatedly executed and the overhead of AutoTSMM
will be negligible.

IV. IMPLEMENTATION AND OPTIMIZATION

We design a tiled algorithm[14, 19] for the pre-pack TSMM
and focus on the optimization of the AutoTSMM in this
section. Algorithm.1 shows the workflow of the pre-pack
TSMM. The AutoTSMM pre-packs the input matrices into
a continuous memory, and then it performs the computing
operation to compute the TSMM.

A. The Runtime Tiled Algorithm

Since the most difference between regular-shaped GEMM
and the TSMM is the length of n-dimension, the tiled al-
gorithm of the TSMM mainly focuses on optimizing the
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Algorithm 1: Workflow of the pre-pack TSMM
Input: matrices :A, B and C, scalar number: M, N,
K, « and S, temporary memory address:
DESTA and DESTB
Output: C = A x B+ pC
Function PACKA (o, SRCA, DESTA):
SRCA =aSRCA,;
for jc=0; je< K ; je+ =k, do
for ic=0;ic< M ; ic+ = m,. do
for it =0, it <m. ; it+ =m; do
L | Pack a block of «SRCA to DEST A;
Function PACKB (o, SRCB, DESTB) :
SRCB = aSRCB,;
for jc=0; je< K ; je+ =k, do
for ic=0;ic< N ; ic+ = n, do
| Pack a block of «SRCB to DESTB;

Function COMPUTE (3,C, DESTA, DESTB):

do in parallel

C = pcC,

for jc=0; jc< K ; je+ =k, do

load a block A, from DESTA

for ic=0;ic< M ; ict = m. do

for it =0 ; it <m, , it+ =m; do
for kc=0; kc< N ; kc+ = n. do
L load a block B, from DESTB;

C.=aA. x B.+ pBC,;
// main function for computing pre-pack TSMM
Function TSMM (o, 5, A, B, DESTA, DESTB):
// pack aA to memory address DESTA
PACKA(a, A, DEST A);,
// pack B to memory address DESTB
PACKB(1, B, DESTB);
// compute C =aA x B+ C
COMPUTE(3, C, DEST A, DESTB);
return C;

cache blocked sizes and the multi-threading on n-dimension.
We design a tiled algorithm for TSMM and the details are
illustrated in Fig.2.

1) Cache blocked designer: GEMM is a cache-oblivious
algorithm on CPUs, thus, cache blocked sizes are one of the
key factors for optimizing GEMM on modern CPUs. The
tiled blocks are selected to fit in L1 cache and L2 cache.
For example, assuming we have a m. X k. sub-matrix A and
a k. x n. sub-matrix B, the best performance of TSMM is
achieved most likely when m. X k. is about half the size of
L2 cache and k. xn.. is equal to the size of L1 cache. Thus, the
block sizes are limited by Eq.2 and Eq.3 follows. Note that,
the n., m. and k. are the block sizes that suit for cache sizes,
and n,, m, and k, are the block sizes that suit for register
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Fig. 2: Tiled Algorithm for the Tall-and-Skinny Matrix-Matrix Multiplication. TSMM is transformed to GEPB(panel-block multiplication),
where my is block height assigned for one thread, k. is the block width suit for L2 cache size. Since n is usually from single digits to hundreds
of digits and is significantly smaller than m and k, the n-dimensional tiling algorithm will not be executed when n < n.. GEPB is transformed
to GEPB,(panel-block-multiplication by threads), where m. is block height suit for L2 cache size, finally GEBB(block-block-multiplication

by threads) is computed as a unit by inner kernels.

sizes.

We design a runtime predictive model to auto-tune TSMM
based on the user input sizes. The predictive model based on
Eq.2 and Eq.3, it is responsible for generating the parameters
of the tiled algorithm. The search patterns depend on the
selected inner kernel and the input. For example, as for 8 x 4
kernel, one of the search pattern searches the optimal param-
eters Moptimar N [Mc—82,mc] and koptimar in [k — 4, k]
according to Eq.2 and Eq.3. And, another search pattern set
the optimal parameters Moptimar aNd Eoptimar €qual to the
largest power of two restricted by Eq.2 and Eq.3. Finally, the
performance evaluator chooses the execution plan created by
the cache blocked designer and the multi-thread optimizer.
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2) Multi-thread optimizer: The conventional GEMM im-
plementations usually assume the length of n is equal to m, and
it will assign the number of threads according to a fixed param-
eter, thus, conventional GEMM implementations may over-
assign threads on n-dimension when computing TSMM. And
the over-assignment causes too much thread synchronization
overhead and significantly affects multi-threaded performance
on computing TSMM.

Meanwhile, the TSMM tiled algorithm in Fig.2 has not di-
vided into slices size into m. xn; and are computed by GEBB,
instead of computed by GEBP; (block-panel-multiplication
by threads) in conventional GEMM implementations. When
computing TSMM, divide the n-dimension into slices like
conventional GEMM implementations is not a good idea. This
is because n is too small and the blocked sub-panel of matrix
B hold by single-thread is much smaller than L1 cache size,
so the L1 data cache cannot be fully utilized. AutoTSMM
will not divide n-dimension when n < n., and ensure every
CPU core holds a block of matrix B in GEBB; and keep it in
the private L1 data cache. Compare to conventional GEMM
implementations, this is a good approach to fully utilize the
L1 data caches when computing TSMM.
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In addition, the packing operation in conventional GEMM
implementations allocates temporary space to store continuous
panels or blocks of matrix. To prevent the temporary space
from being overwritten by the multi-threading packing opera-
tion, each thread stall until all threads finish the GEBPs, then
threads continue to iterate on the K dimension. As for the
pre-pack TSMM, each thread can directly compute the tiled
matrix-matrix multiplication without thread synchronization,
because every block has been packed into a new memory
address. The pre-pack TSMM is a trade-off, but it is effective
when the data is reused.
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Fig. 3: Workload of The Pre-Pack Module

3) Pre-pack TSMM module: The packing operation is re-
sponsible for re-arranging the input matrices to reduce the
L1 cache misses. As shown in section 5, the packing time
is really large when computing TSMM, so it is important to
implement the pre-pack TSMM for data reuse. The workload
of the pre-pack module and the memory diagram of the packed
matrix are illustrated in Fig.3. We optimize the memory access
to minimize the cache misses for each thread. The pre-pack
TSMM module copies a block of the input matrix to a new
memory address and makes the memory access continuous
when computing GEBB; by inner kernels. As shown in Fig.3,
the input matrices are packed into the new continuous memory,
and the headers keep the pointers to the address of every
block assigned to the threads. Note that, the blocks in Fig.3
represents the GEBB; in the TSMM tiled algorithm. And,



the sizes of the blocks are determined by the cache blocked
designer.

4) Cache miss analysis for pre-pack TSMM: Cache
complexity[24] is suitable for analyzing the cache miss rate.
To simplify the analysis, we assume all the matrices are stored
by column-major, and m. =n. = k. =b, m =n =%k =n,
the cache size is Z and the cache is divided into cache-lines of
size L. And T is the number of threads. Note that, this is not an
accurate analysis for TSMM, but it shows how the reduction
of cache complexity occurs in pre-pack TSMM. Based on the
analysis from [25]. Targeting on computing the basic 3-nested
loop GEMM, we compute L elements of C will spend n?/L
times, and it will cause n cache misses each time, thus, the
cache complexity of basic 3-nested loop GEMM is:

O(n’/L) )

As for matrix tiling in conventional GEMM implementa-
tions(i.e. blocking GEMM), loading three b x b blocks in
cache cost 3b?/L for n®/b® times. This leads to 3n®/(bL)
cache misses. And three blocks must fit in cache for best
performance: 3b> < Z. So the cache complexity of block
GEMM is:

0(3V3n*/(LVZ)) )

As for pre-pack TSMM, assume we pre-pack matrix A,
when the computing operations are called, loading A into the
cache will only cause b x b cache misses when the first sub-
matrix A is loaded into the cache. It will cause b%/L cache
misses for every thread, and loading blocks from B and C cost
202 /L for n3/b® times, and we already get 3b*> < Z. So the
cache complexity of computing pre-pack TSMM is:

O(ZT/(3L) + 2V3n®/(LVZ)) (6)

According to Eq.5 and Eq.6, and comparing to conventional
GEMM implementations, pre-pack TSMM reduces the cache
misses caused by packing operation. And the performance is
benefits from the data rearrangement and the data reuse.

B. The Install-time GEMM Kernels Optimization
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Fig. 4: GEBB; Computed by Inner Kernels. The inner kernel perform
a slice-times-slice matrix-matrix multiplication(m, and n, are the
sizes suit for register blocking).

Fig.4 shows how to compute GEBB; by inner kernels.
Since the inner kernels on the X86 platforms have been fully

optimized, We reuse the inner kernels on X86 platforms to
implement the AutoTSMM. However, the inner kernels on
ARMvS8 platforms have not been fully optimized and the
existing ARMv8 16 x 4 and 8 x 4 inner kernels cannot
achieve high-performance. Meanwhile, the flaws on Kunpeng
920 make the existing inner kernels can only achieve sub-
optimal performance. Thus, we focus on the optimization of
assembly inner kernels on Kunpeng 920 and try to figure out
how to improve the poor performance caused by the instruction
issue flaws.

Kunpeng 920 platform has two fused multiply-add (FMA)
units, ideally, peak performance is achieved when two FMA
instructions and one or more load instructions are issued every
cycle. However, Kunpeng 920 can only issue two single-
precision FMA instructions per cycle or issue one FMA
instruction and one load instruction per cycle. Thus, the peak
performance of Kunpeng 920 is limited by the memory access
instructions(i.e., load instructions).

As discussed above, the FMA instructions cannot overlap
the load instructions on Kunpeng 920, so we have to minimize
the percentage of the load instructions when implementing the
inner kernels. Kunpeng 920 has 32 SIMD register files, we
assume the inner kernel size is m, X n,., we implement 12 x 8,
16 x 4 and 8 x 4 kernels on Kunpeng 920 platform. The 12 x 8
inner kernel has the largest FMA instructions ratio 92.3%, so
it is the optimal inner kernel. This rule is not suited for X86
CPUs because the flaws are only found in Kunpeng 920. In
addition, the 12 x 8 inner kernel can output more elements of
matrix C than the 16 x 4 inner kernel at a time, which means
that its utilization of registers is higher. Now we introduce the
details of 12 x 8 inner kernel optimization on Kunpeng 920.

1) The register blocking: There are 32 SIMD vector reg-
isters on Kunpeng 920 platform, as for 12 x 8 inner kernel,
we use VO, V1 and V6, V7 to store the matrix A, V2-V5 are
used for storing matrix B, V8-V31 are used for storing matrix
C. Only V6-V7 are used exclusively, other registers are used
for register renaming.

2) Reorder instructions and loop unrolling: The Kunpeng
920 cannot fulfill the pipeline, so we reorder instructions and
let the FMA instructions and load instructions are spaced
farther apart to avoid pipeline hazards. We assemble the inner
kernels by KERNEL_M1, KERNEL_M?2. This is a ping-pong
strategy, which is an effective way to build inner kernels. It
means KERNEL_M1 loads the data for KERNEL_M2, and
KERNEL_M2 also loads the data for KERNEL_M1. We use
loop-unrolling on k-dimension by repeatedly calling KER-
NEL_M1 and KERNEL_M2 to make the pipeline throughput
higher.

3) Prefetch from the cache: The prefetch instructions are
also used for optimization. We insert the prefetch instructions
between floating-point instructions, as for 12 x 8 kernel, it
prefetches 5120 bytes, 448 bytes and 320 bytes for matrix A,
B and C, respectively. Prefetching seems likely to be a hand-
writing optimization on target machines.



V. PERFORMANCE EVALUATION

This section shows the experimental results on X86 and
ARMVS platforms. We compare the performance of Au-
toTSMM on computing single-precision TSMM (STSMM)
and double-precision TSMM (DTSMM) with state-of-the-art
implementations. Table 1 shows the experimental environ-
ments.

TABLE I: Experimental Environments

CPU Kunpeng 920  Xeon E5-2640 v4
Arch. ARMVS.2 Broadwell-EP
Freq. 2.6GHz 2.4 GHz
SIMD 128 bits 256 bits
L1D cache 4 MiB 320 KiB
L2 cache 32 MiB 2.5 MiB
L3 cache 64 MiB 25 MiB
Compiler GCC17.5 GCC7.5
Intel MKL - 2021.2.0
ARMPL 21.0 -
BLIS 0.81 0.81
OpenBLAS 0.3.13 0.3.13

We assume that matrix A is a large square matrix, and ma-
trix B is a tall-and-skinny matrix. Note that, we choose these
test cases because we believe they can show the challenge
in optimizing TSMM. The performance evaluation computes
TSMM 200 times, and M = K = 25600, referring to previous
works like MKL[13] and TSM2[1], we believe these test
cases are reasonable for comparing the performance of the
TSMM. The performance of the AutoTSMM framework is
labeled AutoTSMM, The performance of Intel MKL TSMM
modules is labeled MKL-TSMM. The conventional GEMM
implementations’ performances are represented by the BLAS
library name plus “sgemm” or “dgemm”, where “sgemm”
represents single-precision GEMM(SGEMM), and “dgemm”
represents double-precision GEMM(DGEMM). We use Eq.7
for measuring the performance. Notice that, the packing time
is ignored.

2x M-N-K x1079

GFlops = ;

)

A. Targeting on Intel Xeon

Fig.5 shows the packing time taken on the X86 and ARMv8
platforms. When n is very small, the percentage of the packing
time is very large, reaching 90% and 75%, respectively. With
the increase of n, the percentage of the packing time gradually
decreases. When N = 240, the percentage of packing time on
the X86 platform is about 20%, and on the ARMvS8 platform
is 3%. In a word, when the length of N is small, the packing
time is the main overhead, as the length of N increases, the
packing time takes up less.

Fig.6 shows the performance comparison on X86 platforms.
Xeon E5-2640 v4 has 10 cores with 20 threads, so it has
1536 GFlops peak performance for single-precision and 768
GFlops for double-precision. The performance of AutoTSMM
can achieve 78.9% of single-precision peak performance along
with 76.7% of the double-precision peak performance at most.
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AutoTSMM can achieve 115.2% and 105.1% of the Intel
MKL-TSMM on computing STSMM and DTSMM, respec-
tively. We believe the reason why DTSMM performance is
not as good as STSMM is that the Intel MKL implements the
inner kernels with a larger loop-unrolling on K-dimension.

And the conventional GEMM implementations cannot com-
pete with AutoTSMM and MKL-TSMM. On the X86 plat-
form, AutoTSMM achieves 1.63x, 2.38x and 3.19x average
speedup comparing to MKL-sgemm, OpenBLAS-sgemm and
BLIS-sgemm, respectively. And it achieves 1.53x, 3.27x and
2.87x comparing to MKL-dgemm, OpenBLAS-dgemm and
BLIS-dgemm, respectively.

In addition, when N = 240, the packing time taken is less
than 20% and 3% on X86 and ARMvVS platforms, respec-
tively, AutoTSMM can still achieve 30% to 162% acceleration
compared to conventional implementations. Therefore, we can
conclude that our tiled algorithm works well.

From the curves in Fig.5 and Fig.6, we can conclude:

1) AutoTSMM and MKL-TSMM reduce the packing time
by pre-pack operation and achieve a significant perfor-
mance improvement by the data reuse.

Our runtime tiled algorithm is effective, and it out-
performs the Intel MKL on computing STSMM
and achieves competitive performance on computing
DTSMM.

AutoTSMM brings a significant speedup comparing to
conventional GEMM implementations.

2)

3)

B. Targeting on Kunpeng
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Fig. 8: The SGEMM Performances on ARMv8 CPUs

Figure 8 shows the single-thread SGEMM performance
comparison on Kunpeng 920. When the matrix size is small,
our 12 x 8 inner kernel is not as good as OpenBLAS
16 x 4 inner kernel, as the scale increases, our implemen-
tation can achieve higher peak performance. The single-core
peak performance of Kunpeng 920 is 41.6 GFlops, and our
implementations can reach 92.2% of the peak performance.
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Our 12 x 8 inner kernel has 1.35x, 1.12x and 3.05x peak
performance speedup comparing to OpenBLAS, ARMPL and
BLIS, respectively. It proves that our optimization of the inner
kernels on Kunpeng 920 is effective.

Figure 7 shows the performance comparison between Au-
toTSMM and other implementations on Kunpeng 920. Since
there is no open-source or vendor-provided TSMM implemen-
tation on the ARMv8 platforms to our knowledge, we compare
the AutoTSMM with the conventional GEMM implementa-
tions. The performance of AutoTSMM is significantly better
than the existing GEMM implementations on the ARMvS
platform.

On the ARMvS platform, AutoTSMM achieves an average
acceleration ratio from 2.3x to 21.7x and 2.9x to 15.1x
compared to conventional SGEMM and DGEMM implemen-
tations, respectively. We believe that there are two reasons. On
the one hand, the existing multi-threaded GEMM implemen-
tations are not specifically optimized for the TSMM. On the
other hand, our inner kernels are fully optimized to achieve
higher performance on Kunpeng 920.

In addition, the existing GEMM implementations do not
have a runtime auto-tune process, while AutoTSMM generates
the execution plan for better performance. AutoTSMM allows
developers to avoid manual tuning and auto-tune for the input
sizes, which is one of the most advantages. AutoTSMM is
located on the upper layer of the specific architecture, as
long as the inner kernels are highly optimized, the high-
performance TSMM will surely be achieved on AVX-512
machines and other platforms.

VI. CONCLUSION

This paper focuses on the implementation and optimiza-
tion of the auto-tuning framework, AutoTSMM, on X86 and
ARMVvS platforms. We can conclude that AutoTSMM is a
portable auto-tuning framework to build the high-performance
TSMM on mainstream CPUs. When new architecture arrives,
the developer does not need to know every detail of the
optimization of the TSMM. The only required is the inner
kernels on target machines. Thus, the AutoTSMM significantly
reduces the effort to apply high-performance TSMM to new
platforms. The limitation of AutoTSMM is the number of
data reuses. If the number of data reuses is less, then the
improvement brought by AutoTSMM will be less obvious.
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