
Practical Deanonymization Attack in Ethereum
Based on P2P Network Analysis

Yue Gao∗†‡, Jinqiao Shi∗§, Xuebin Wang∗†‡, Ruisheng Shi§, Zelin Yin∗† and Yanyan Yang¶
∗ Institute of Information Engineering Chinese Academy of Sciences

† National Engineering Laboratory for Information Security Technologies
‡ School of Cyber Security, University of Chinese Academy of Sciences

§ Beijing University of Post and Telecommunications
¶ Department of Information Technology and Cyber Security, People’s Public Security University of China

Abstract—Ethereum is the second-largest cryptocurrency,
which is an open-source public blockchain platform with
smart contract functionality. With the increasing popularity of
Ethereum, considerable attention has been paid to its privacy
and anonymity. Previous work in Ethereum deanonymization
mostly focused on the analysis of its transaction graph and user
behaviors. In this paper, for the first time we explored the feasi-
bility of deanonymizing Ethereum users based on P2P network
analysis. By measurement and analysis, we observed that the
attacker can make connections with approximately 90% mainnet
synced full nodes. Based on the well-connected supernode, the
deanonymization experiments with basic estimators preliminarily
indicate that the anonymity of Ethereum P2P network is pretty
limited. To further improve the effect of deanonymization, we
implemented and evaluated a machine learning based estimator,
which reduces the influence of network delay on deanonymization
and thus increases the success rate to 88%. At last, we provide the
discussion about the anonymity and efficiency of the propagation
mechanisms.

Index Terms—Ethereum, Blockchain, Anonymity, P2P network

I. INTRODUCTION

Ethereum has grown rapidly since its inception in 2015. And

Ether is the native cryptocurrency of the platform. Ranking

after Bitcoin, it is the second-largest cryptocurrency by market

capitalization. In the circulation of Ether, the identities of

users are hidden behind the addresses generated from public

keys. To some extent, the pseudonym mechanism protects the

privacy of users. However, it is known that these pseudo-

anonymous transactions are also abused in illegal activities

where the criminals try to obscure their money traces, like

money laundering, drug dealing and so on.

The anonymity and privacy of cryptocurrencies, like Bit-

coin and Ethereum, have attracted accumulating attention and

research. Some studies try to enhance the anonymity of cryp-

tocurrencies [13]–[17], while others manage to deanonymize

users from various perspectives. The deanonymization attacks

can be divided into two categories, aiming at identifying

addresses that belong to the same user [5], [6], [18], [19], or

revealing the relationship between addresses and real-world

identities, such as IP addresses. The former is necessary for

Corresponding author: Xuebin Wang, Email:wangxuebin@iie.ac.cn

deanonymization, because criminals may create large numbers

of addresses to make transactions for hiding themselves better.

Besides, normal users may also create new addresses with the

consideration of privacy. But to achieve the ultimate goal of

deanonymization, a further step needs to be taken to link these

addresses to real-world identities. One way to map addresses

and thus entities to identities is by gathering information from

side channels. For example, addresses exposed in news reports

or publicly declared by users on social networks. A more

rigorous way is exploiting the information revealed on the

P2P network to correlate transactions to their originators’ IP

addresses.

Previous research on revealing users’ identities based on

P2P network analysis was mainly conducted on Bitcoin [8]–

[10]. In this paper, we will focus on Ethereum, which has a dif-

ferent network structure and protocols. The deanonymization

attack on blockchain P2P network was first proposed by Dan

Kaminsky during the 2011 Black Hat conference [2], which

has been applied [7] and theoretically analyzed [9] in Bitcoin.

This kind of attack relies on a supernode that connects to all

nodes in the network and listens to the relayed transactions.

Then the attacker infers the source node based on the estimator

with a certain strategy. In this paper, we manage to answer

two involved questions in the practical attack. One is what

coverage of Ethereum nodes the attacker can make connections

with, and the other is which strategy should be adopted in

Ethereum to infer the source node accurately.

Our experiments show that there is around 10K synced

full nodes in Ethereum mainnet. The supernode can maintain

connections with about 90% of them. The main reason for

disconnection is the instability of the network. By analyzing

the communication protocol and its implementation, we found

that Ethereum nodes send transactions to their neighbors

immediately, i.e., without any extra random waiting time. In

this case the main factor affecting the deanonymization is

network delay. There are two basic estimators to infer the

source node. The firstReach estimator outputs the node whose

transaction message arrives the supernode first as the source

node. However, the triangle inequality violations of network

delay may lead to the failure of the deanonymization. For

the firstSend estimator, it outputs the node to send out the

1402

2021 IEEE Intl Conf on Parallel & Distributed Processing with Applications, Big Data & Cloud Computing, Sustainable
Computing & Communications, Social Computing & Networking (ISPA/BDCloud/SocialCom/SustainCom)

978-0-7381-2646-3/21/$31.00 ©2021 IEEE
DOI 10.1109/ISPA-BDCloud-SocialCom-SustainCom52081.2021.00191

transaction earliest as the source node. The time when the

transaction was sent is estimated by measuring the delay

between the supernode and the senders. However, the errors of

delay estimation may cause the failure of the deanonymization.

To combine the two estimators and thus infer the source node

with a higher success rate, we propose a machine learning

based estimator. Our experiments on Ethereum mainnet show

that the ML-based estimator can deanonymize transactions

with 88% success rate, which is 8% and 10% higher than

that of the firstReach estimator and the firstSent estimator.
The following of this paper is structured as follows: Section

II briefly introduces the background knowledge of Ethereum,

especially its P2P network; Section III gives the definition

of the deanonymization problem and the analysis of two key

questions for the practical attack; In Section IV we provide

the experiment results of the deanonymization experiments

on Ethereum testnet and mainnet, including the comparison

between basic estimators and proposed ML-based estimators;

In Section V we give some further discussion about the

propagation mechanisms. Section VI reviews related work;

Finally, we conclude our paper in Section VII.

II. BACKGROUND

A. Ethereum P2P network
Ethereum is managed by a fully distributed structured P2P

network. The network communication is composed of a set

of protocols, namely Devp2p protocol [1]. Devp2p protocol is

the main component of common Ethereum clients, like Geth

(the official Go client) and OpenEthereum (an unofficial Rust

client). The protocol suite includes several bottom protocols:

Ethereum Node Records, Node Discovery Protocol and RLPx

transport protocol. It also defines RLPx-based application-level

protocols, such as Ethereum Wire Protocol.

• Ethereum Node Records is an open data format for

P2P connections. Node record consists of three parts,

signature, sequence number and the key/value pairs of

node information. The last part usually contains IP, port

and so on, for other nodes to decide whether to connect

to the node.

• Node Discovery Protocol is based on Kademlia DHT for

the storage and retrieval of Ethereum nodes. Each node

has a cryptographic identity. The public key serves as its

nodeID, and the private key is used to sign transactions.

The logical distance between two nodes is decided by

XOR operation of nodeID hashes.

Ethereum node discovery is implemented via UDP proto-

col, including three pairs of messages. 1) Ping and Pong:

to detect the node status; 2) FindNode and Neighbors:

to query nodes closest to the target; 3) EnrRequest
and EnrResponse: to request the node record. Besides,

the Geth team maintains a list of reachable nodes by

periodically traversing the DHT. It is a supplement to

hardcoded bootstrap nodes and traditional node discovery

protocol.

• RLPx Transport Protocol is a TCP-based protocol for

information exchange between nodes. The establishment

of connection includes key exchange and protocol hand-

shake. Key exchange is based Diffie Hellman algorithm

for further encrypted communication. Protocol handshake

is implemented by exchanging Hello messages, which

contains protocol version, clientID, capabilities, listening

port and nodeID. The capabilities represent the supported

application-level protocol. For example, eth/65 indicates

that the node supports v65 Ethereum Wire Protocol.

• Application-level Protocols for Ethereum includes

Ethereum Wire Protocol (eth), Light Ethereum Subpro-

tocol (les), Parity Light Protocol (pip) and so on. The

eth protocol is the main protocol in the current Ethereum

network. When two nodes complete the RLPx handshake,

they need to exchange the Status message first. The Status
message contains protocol version, networkID, difficulty,

current block hash, genesis block hash and forkID. The

networkID and genesis hash of Ethereum mainnet is 1

and 0xd4e5...8fa3. The latest fork is the Berlin hard fork

on April 15, 2021.

Nodes that support the eth protocol are considered to be

Ethereum full nodes, which synchronize blockchain data

through the relay of transactions and blocks. There are

two protocols for light nodes, les and pip. Light nodes

only download the block header and query other infor-

mation on demand. Light nodes can create transactions,

but they don’t participate in the relay of transactions and

blocks. Some full nodes also support light protocols to

provide services for light nodes.

B. Address and Transaction

• Address in Ethereum can either be an externally owned

account (EOA) address, or a smart contract account

address. The EOA address is generated by secp256k1

elliptic curve encryption algorithm, controlled by the

private key. The smart contract account address is de-

termined by the sender’s address and the number of its

generated transactions (nonce), controlled by the contract

code.

• Transaction is a piece of data initiated by the signature

of the EOA address. All valid transactions will be in-

cluded in the blockchain data. There are three kinds of

transactions: 1) Normal Transactions: sent from an EOA

address to the other. This is the most common kind of

transaction. The transactions transfer ETH between EOA

addresses; 2) Contract Deploying Transactions: sent from

an EOA address to the zero-account. The purpose of these

transactions is to deploy smart contracts. As mentioned

above, the contract address will be determined by the

sender and its nonce; 3) Contract Executing Transactions:

sent from an EOA address to a deployed contract address.

It can be seen that all Ethereum transactions are triggered

by EOA addresses.

III. DEANONYMIZATION ON P2P NETWORK

Ethereum provides privacy through the pseudonym mech-

anism. The identities of Ethereum users are hidden behind

1403

addresses generated from public keys. From the perspective

of its P2P network, transactions are broadcast to the whole

network. Each Ethereum node can be either the creator of the

transaction or just the forwarder. The deanonymization in the

P2P network is to identify the IP address of the transaction

creator, i.e., the source node. The P2P network of Ethereum

nodes can be modeled as a graph G(V,E), where V is the set

of all nodes and E is the set of edges or connections between

them. The goal of deanonymization is to identify the source

node v∗ ∈ V .

Deanonymization on the P2P network of cryptocurrency

was first proposed by Dan Kaminsky at the 2011 Black Hat

conference. As shown in Fig.1, the author pointed out that

when the supernode controlled by the attacker has established

connections with all nodes in the network, he listens to all

relayed transactions and concludes that the first node that

announces the transaction may be the source node.

Fig. 1. Deanonymization on P2P network.

Inspired by the technique, in this paper we will study the

feasibility of deanonymization in the real-world Ethereum net-

work. In practice, the deanonymization attack can be divided

into two phases, connecting to all Ethereum nodes and then

inferring the source node of the transactions.

A. Connect to Ethereum nodes

Ethereum nodes can be divided into reachable nodes and

unreachable nodes, according to whether incoming connec-

tions are accepted. For the latest version of Geth, each node

is allowed to establish up to 8 outgoing connections to other

nodes and maintains up to 50 active connections in total. While

for the latest version of OpenEthereum, each reachable node

accepts up to 25 incoming connections and maintains up to

50 total active connections. The supernode cannot establish

the connections actively with unreachable nodes behind NATs

or firewalls. For these unreachable nodes, the only thing the

supernode can do is to listen and wait for their incoming

connections. Besides, for reachable nodes, the connection

requests from the supernode are not always accepted by nodes

due to the limit of the maximum number of connections.

EthNodeFinder. To obtain the view of the real-world

Ethereum network, we built ethNodeFinder to collect active

Ethereum nodes. EthNodeFinder is based on the modified

Geth client (v1.10.1) with differences in three aspects: Firstly,

ethNodeFinder logs HELLO, DISCONNECT and STATUS

messages to record node information, and TRANSACTIONs

and NEW POOLED TRANSACTION HASHES messages

to verify whether nodes are completely synced. Secondly,

ethNodeFinder disconnects from nodes within one minute to

reduce resource consumption. Thirdly, ethNodeFinder period-

ically reconnects known nodes who sent DISCONNECT with

reason too many peers.

EthTXListener. To obtain the full visibility of the transac-

tion propagation, we built ethTXListener to maintain connec-

tions with as many Ethereum nodes as possible. EthTxLis-

tener differs from the unmodified Geth client (v1.10.1)

in four aspects: Firstly, ethTxListener ignores the maxi-

mum peer connections limit to accept more connections

from Ethereum nodes. Secondly, ethTxListener logs TRANS-

ACTIONs and NEW POOLED TRANSACTION HASHES

messages, which include nodeID, nodeIP, TxHash and arrival

timestamp. Thirdly, ethTxListener doesn’t send transactions

out, and doesn’t synchronize block data either. Fourthly,

ethTxListener only maintains connections with completely

synced Ethereum nodes, since unsynced nodes can’t create

or relay transactions.

B. Infer the source node

The strategy to infer the source node depends on the

analysis of the transaction propagation. Although most types

of Ethereum clients are based on Devp2p protocol, the im-

plementation may be slightly different: 1) Naive-Flooding:

For early Geth clients, nodes send the transaction to all

neighbors; 2) Semi-Flooding: To reduce the traffic burden,

current Geth clients select
√
n neighbors to send the complete

transaction, and then only announce the transaction hash to

the other neighbors; 3) Gossip: OpenEthereum clients select√
n neighbors to send the complete transaction, and send

nothing to the other neighbors. Even if the supernode has

established a connection with an OpenEthereum node, it may

not be chosen by the node to send transactions to. This is the

main difference between Geth and OpenEthereum in terms of

propagation mechanism. Through the case study of Geth and

OpenEthereum, it can be found that although their propagation

mechanisms are not the same, they all forward transactions

immediately. Compared with Bitcoin, there is no extra random

waiting time before sending transactions, thus the main factor

affecting the deanonymization of Ethereum is network delay.

FirstReach Estimator. The method proposed by Dan

Kaminsky [2] to infer the source node can be called FirstReach

estimator. Let τv denote the time the supernode receives the

transaction from node v ∈ V , and τ denote the set of all arrival

timestamps. The FirstReach estimator MFR outputs the first

node to report the transaction to the supernode as:

MFR(τ,G) = argmin
v∈V

(τv). (1)

The success of the FirstReach estimator is based on the

assumption that the network delay time of one hop forwarding

is always less than that of two hops. However, many studies

[3], [4] have shown that triangle inequality violation (TIV) is

1404

a persistent and widespread phenomenon in the network. As

shown in Fig.2, the transaction is created by A. The arrival

timestamp of the transaction sent directly from A to C is τA,

while the arrival timestamp of the transaction forwarded by A

to B and then from B to C is τB . The network delay between A

and C, A and B, B and C are denoted as delayAC , delayAB ,

delayBC , respectively. If delayAC ≥ delayAB + delayBC ,

the supernode will receive the transaction forwarded by other

nodes earlier than the source node, i.e., τA ≥ τB .

Fig. 2. Triangle Inequality Violations (TIVs) in network.

FirstSent Estimator. The intuitive solution to triangle in-

equality violations is to measure the network delay between

the supernode and other nodes. Let δv denote the measured

network delay between the supernode and the node v ∈ V , δ
denote the set of delays. Then the attacker infers the source

node according to estimated sending timestamp as:

MFS(τ, δ,G) = argmin
v∈V

(τv − δv). (2)

The performance of the FirstSent estimator is closely related

to the delay estimation. However, the delay estimation cannot

be absolutely accurate. For example, we can only obtain

the RTT delay, but the asymmetry may lead to the error of

estimation.

ML-based Estimator. The two basic estimators have their

own shortcomings, in some cases the FirstReach estimator

can correctly infer the source node, while in other cases the

FirstSent estimator performs better. Inspired by this, we expect

to train a machine learning based estimator to combine the two

estimators, so as to infer the source node with a higher success

rate without human decision.

The problem of deanonymization can be regarded as a

multiclass classification problem. Each node can be considered

as a class. However, the traditional multiclass classifier is not

suitable for this problem, since the characteristics of each node

(class) are changed for different transactions. Therefore, we

first simplify the problem to a binary classification problem,

that is, to judge whether a transaction is sent by a target

node. Then, for the same transaction, the node with the

largest positive probability output by the binary classifier is

considered as the source node. In Section IV, we provide

details of the combined estimators and the deanonymization

success rate of the three estimators.

IV. EXPERIMENTS AND EVALUATION

A. The bird’s-eye view of Ethereum P2P network
Experiment Setup. From June 18th-July 2nd, 2021, we ran

40 instances of ethNodeFinder on 20 Ubuntu 16.04 machines

with 2GB RAM and 1 core CPU.
To validate the discovery coverage of ethNodeFinder, we

compared the result with two external data sources, ethern-

odes.org [11] and ethereum/discv4-dns-lists [12]. The former

is a third-party Ethereum node explorer, and the latter is a

periodically updated Ethereum reachable node list maintained

by Geth team. We crawled ethernodes.org at midnight on July

1st and obtained 3,692 nodes totally. Filtered by the field

‘lastSeen’, only 1,431 nodes were collected by ethernodes.org

in the 24 hours. The ethereum/discv4-dns-lists updated three

times in July 1st. By checking the field ‘lastResponse’, there

are 3,017 nodes that remained. For ethNodeFinder, we select

nodes discovered on July 1st and with networkID 1 and

genesis hash 0xd4e5...8fa3 for comparison, which amounts to

32,764 nodes. As shown in Table I, the total number of discov-

ered nodes of ethNodeFinder instances is far more than that of

external data sources. Nodes collected by ethernodes.org and

ethereum/discv4-dns-lists can be discovered by ethNodeFinder

with the probability of 97.55% and 94.10% respectively. It

indicates that ethNodeFinder has a good ability of discovery.

TABLE I
ETHEREUM NODE DISCOVERY COMPARISON

Datasets ethernodes discv4-dns-lists

(count) (1,431 / 3,692) (3,017 / 3,037)

ethNodeFinder (32,764) 97.55% (1,396) 94.10% (2,839)

To further verify the coverage, we analyzed the relationship

between the number of deployed instances and the total

number of discovered nodes. As depicted in Fig 3(a), the total

number of all discovered nodes continues to grow and finally

reaches over 30 thousand, whose sign of convergence is not

obvious. In contrast, the growth rate of completely synced full

nodes decreases gradually, and converges to approximately 10

thousand when the number of instances reaches 20. Compared

with 20 instances, the number of synced full nodes collected

by 40 instances has only increased by 2%. The daily number

of discovered nodes is shown in Fig. 4(c). There are around

32K distinct nodes (with networkID 1 and genesis hash

0xd4e5...8fa3) discovered per day on average, among which

around 10K are completely synced full nodes. The remaining

22K or more nodes include unsynced nodes, forked nodes,

and light nodes, none of them participate in the broadcast of

transactions generated by other nodes.
Based on the collected data on July 1st, we analyze the

distribution of the nodes. As shown in Fig. 4(a), 6% of

Ethereum nodes are light nodes. Light nodes can only create

their transactions but not relay transactions of other nodes,

therefore these nodes have no anonymity. In terms of client

heterogeneity (Fig. 4(b)), we observed that Geth clients ac-

count for 89% of all nodes, followed by OpenEthereum at 8%,

1405

(a) (b) (c)

Fig. 3. (a) Total number of discovered nodes for varying numbers of ethNodeFinder instances. (b) Daily number of discovered Ethereum nodes. (c) The
connections coverage rate of the supernode.

(a) (b) (c)

Fig. 4. (a) The capabilities of Ethereum nodes. (b) The client implementations of Ethereum synced mainnet full nodes. (c) The network types of Ethereum
synced mainnet full nodes.

while the remaining 15 types of clients only account for 3%

of all nodes. That’s to say, most Ethereum nodes broadcast

transactions through semi-flooding propagation mechanism.

Besides, Fig. 4(c) indicates there are more unreachable nodes

than reachable nodes in the Ethereum network. Specifically,

unreachable nodes account for 52% of all synced full nodes.

It means that the supernode must allow incoming connections

to monitor unreachable nodes.

B. The connections coverage

Experiment Setup.The ethTxListener instances on mainnet

were deployed in a distributed manner to cope with the huge

traffic. Specifically, 10 instances were deployed on 10 Ubuntu

16.04 machines with 8GB RAM and 4cores CPU located all

in America. Each instance maintains connections with non-

overlapping parts of nodes in the entire network. The Net-

work Time Protocol (NTP) is used for clock synchronization

between instances.

In order to obtain the approximate coverage rate of the

supernode, we compare the number of nodes currently con-

nected to the ethTxListener instances with the number of nodes

discovered by ethNodeFinder instances in the last hour. The

comparisons were made at each hour on July 1st. As shown

in Fig. 3(c), more than 99% of the nodes had ever established

a connection with the supernode in the day, and around 90%

were maintaining the connection. For the broken connections,

the main reason (over 65%) of broken is the instability of the

network.

C. Deanonymization with basic estimators

Experiment Setup. The deanonymization experiments were

carried out on the testnet (Ropsten) and mainnet of Ethereum.

The setup of ethTxListener instances on mainnet has been

described in Section IV-B. For testnet, three independent

ethTxListener instances were deployed respectively in Amer-

ica, Germany and India. Each instance ran on Ubuntu 16.04

machines with 8GB RAM and 2cores CPU.

To verify the success rate of the deanonymization attacks,

we built ethTxPretender to generate transactions and sends

them only to one selected node (i.e., the target node) each time.

These transactions from ethTxPredenter will behave just like

that from the target node. For deanonymization experiments on

testnet, 300 nodes were randomly chosen by ethTxPretender as

the target nodes. For each target node, the ethTxPretender cre-

ated 10 transactions and sent them only to the node, amounting

to 3000 transactions. For deanonymization experiments on

mainnet, since real money is required to spend the transactions

fee, we randomly selected 100 nodes as the target nodes, and

only one transaction was sent to each node, a total of 100

transactions.

1406

The result of deanonymization on testnet is shown in Table

II. For FirstReach estimator, the success rates of ethTxLis-

tener instances in India, Germany, and America are 77.80%,

64.80%, and 76.77% respectively. Compared with FirstReach

estimator, the performance of FirstSent estimator is better on

the success rates (82.43%, 85.30%, and 83.97% respectively),

which is less affected by geographical location.

TABLE II
THE SUCCESS RATES OF DEANONYMIZATION ON ETHEREUM TESTNET.

Estimator

Success Rate
IN DE US

FirstReach 77.80% 64.80% 76.77%

FirstSent 82.43% 85.30% 83.97%

The ultimate goal of deanonymization is to identify the

source node of a transaction directly, but reducing the size of

the anonymous set is also meaningful. In Fig. 5(a) we depict

the success rates that the source node is in the set of top

k nodes the estimator outputs. The performance of FirstSent

estimator is throughout better than the FirstReach estimator.

When k = 10, the success rates of FirstSent estimator for

ethTxListener instances at different geographical locations all

reach 98%. That’s to say, FirstSent estimator is able to reduce

the anonymous set of a transaction to 10 nodes (about 1% of

all nodes on testnet) with 98% success rate.

Recall that transactions in Ethereum can only be generated

from the owner of the EOA address (i.e., the sender address),

we can simply believe that transactions with the same sender

address should be sent from the same node. Based on this

assumption, the sender’s address can be deanonymized through

multiple transactions. As shown in Fig. 5(b), with the help of

three transactions, FirstSent estimator located in Germany can

infer the source node of the sender with a success rate of 99%.

The result of deanonymization on mainnet is shown in Fig.

5(c). When k = 1, i.e., the first node that the estimator outputs

is the right source node, the success rate of FirstSent estimator

is 82%, which is 2% higher than that of FirstReach estimator.

When k = 10, the success rates of the two estimators are

improved to 93% and 91% respectively. The result indicates

that FirstSent estimator is able to reduce the anonymous set of

a transaction to 10 nodes (about 0.1% of all nodes on mainnet)

with a success rate of 93%.

D. Deanonymization with ML-based estimator

By reviewing the experiment results, we find that when

FirstSent estimator fails, FirstReach estimator may infer the

source node correctly in some cases. Inspired by this, we

expect to train a machine learning based estimator to combine

the two estimators, so as to infer the source node with a higher

success rate without human decision.

Features Selection. The features selected for the classifica-

tion task of deanonymization are detailed as follows.

1) Reach Time Diff. The time difference between the arrival

timestamp of the node and the minimum arrival timestamp.

2) Sent Time Diff. The time difference between the es-

timated sending timestamp of the node and the minimum

estimated sending timestamp. The delays were measured based

on TCP timestamp.

3) Inst Delay. The delay measured at the closest time

(within 1 second) the transaction arrives.

4) Avg Delay. The average delay of all delays measured

within 10 seconds before and after the transaction arrives.

5) Delay Std. The standard deviation of all delays measured

within 10 seconds before and after the transaction arrives.

Classifiers Selection. Although there are some studies on

how to choose classifiers, the most commonly used approach

is to test the performance of different classifiers on the

current dataset. The datasets obtained in Section IV-C are split

into two halves for train and test. The evaluated classifiers

include Adaboost, GradientBoosting and RandomForest. The

experiment results are shown in Table III. According to

the F1 scores, the RandomForest classifier (trained with 50

DecisionTree classifiers) achieves the best performance on all

datasets. Therefore, we choose the RandomForest classifier for

the following experiments of deanonymization.

TABLE III
PERFORMANCE OF BINARY CLASSIFIERS.

Algorithm Precision Recall F1

mainnet

Adaboost 67% 84% 75%

GradientBoosting 85% 87% 86%

RandomForest 85% 95% 90%

testnet-DE

Adaboost 84% 84% 84%

GradientBoosting 89% 86% 88%

RandomForest 88% 89% 88%

testnet-US

Adaboost 83% 81% 82%

GradientBoosting 85% 89% 87%

RandomForest 85% 89% 87%

testnet-IN

Adaboost 79% 79% 79%

GradientBoosting 85% 88% 86%

RandomForest 83% 89% 86%

Evaluation. Finally, we apply the trained binary classifier

to infer the source node. As shown in Fig. 6, the ML-based

estimator has the best success rates for both deanonymization

in Ethereum testnet (88.6%, 89% and 86.3% respectively) and

mainnet (88%). Although the performance of the ML-based

estimator depends to some extent on FirstReach estimator and

FirstSend estimator, it can infer the source node with a higher

success rate without human decision.

V. DISCUSSION

Our experiments show that the anonymity of Ethereum P2P

network is pretty limited. Ethereum doesn’t consider much

anonymity when being designed and implemented. Now we

will analyze the efficiency and anonymity of its propagation

mechanisms.

As mentioned before, there are three different transac-

tion propagation mechanisms in Ethereum, namely Naive-
Flooding, Semi-Flooding and Gossip. We first qualitatively

analyze the anonymity of these three propagation mechanisms.

1407

(a) (b) (c)

Fig. 5. (a) The top-k deanonymization success rates on Ethereum testnet. (b) Deanonymization of sender addresses with multiple transactions. (c) The top-k
deanonymization success rates on Ethereum mainnet.

Fig. 6. The comparison of the success rates between ML-based estimator and
the two basic estimators.

When the supernode establishes a connection with a Geth

node, it can receive all transactions sent by it directly. How-

ever, when connecting to an OpenEthereum node, the attacker

may not be chosen as the node to send to. Suppose that the

supernode maintains m connections with an OpenEthereum

node (m ≥ 0). The probability p that the supernode is chosen

as the node to send transactions to can be calculated as:

p(n,m) = 1− c(n−m,
√
n)

c(n,
√
n)

. (3)

By default, the maximum number of connections of

OpenEthereum client is 50. Fig.7(a) depicts the relationship

between m and p when n equals 25 and 50. It can be seen that

if n = 50, when m = 1, p equals 14.14%. When m increases

to 10, p increases to 81.68%. For Naive-Flooding and Semi-
Flooding, p is always equal to 100% when one connection

is maintained. It’s worth noting that the anonymity of Semi-
Flooding is even worse than that of Naive-Flooding, since in

Semi-Flooding the neighbors that only received the transaction

hash need more time to request the complete transaction

before sending it to their neighbors. Thus when considering

anonymity, Gossip>Naive-Flooding>Semi-Flooding.

Then we discuss the broadcast efficiency of three prop-

agation mechanisms. Suppose there are total N nodes in

Ethereum network, and the degree of each node is n (i.e.,

each node maintains n connections with other nodes, so-

called neighbors). NetworkX, a Python language library for

exploration and analysis of networks and network algorithms,

is used to generate a small-world graph close to the cur-

rent Ethereum network (N=10,000 and n=50). Based on the

graph, we simulated the propagation of the three propaga-

tion mechanisms. The broadcast efficiency of the mecha-

nisms is shown in Fig. 7(b).In just 4 propagation rounds,

a transaction can be known by the entire network with the

Naive-Flooding mechanism. Although the efficiency of Semi-
Flooding is slightly better than that of Gossip, it both takes 7

rounds for the two mechanisms to broadcast the transaction to

the entire network. Thus when considering efficiency, Naive-
Flooding>Semi-Flooding>Gossip.

In summary, the broadcast efficiency of Gossip is almost the

same as that ofSemi-Flooding, and its anonymity is the best

of the three propagation mechanisms. Considering both the

efficiency and anonymity, we believe that Gossip is a better

choice for the Ethereum P2P network.

Ethical Concerns. To validate the feasibility of

deanonymization in Ethereum, we conducted our experiments

both on testnet and mainnet in a responsible manner. The

transactions used for deanonymization were all generated by

ourselves. Additionally, we securely delete all collected data

after statistically analyzing them, only publish aggregated

statistics about the collected data.

VI. RELATED WORK

The existing research on the anonymity and privacy of

Ethereum is based on heuristics or extracted features, which

aims at the clustering of addresses. In 2020, Victor et al.

proposed several heuristics that exploit patterns related to

deposit addresses, multiple participation in airdrops and token

authorization mechanisms [5]. Besides, Ferenc et al. utilized

the active time of the day, the gas price selection and the

location in the transaction graph as the features to cluster

addresses. They also proposed deanonymization techniques

against several popular privacy-enhancing tools [6].

The goal of address clustering is to find multiple Ethereum

addresses of the same user, but it can’t reveal the user’s

1408

(a) (b)

Fig. 7. (a) The probability of being chosen as the node to send transactions to. (b) The broadcast efficiency of different propagation mechanisms.

identity in the real world. Mapping account addresses to their

IP addresses provides an opportunity to deanonymize users.

In 2014, Koshy et al. analyzed the propagation of trans-

actions in the Bitcoin P2P network and found that abnormal

transaction patterns can be utilized to distinguish the initiator

of the transaction from other nodes [7]. For nodes behind

NATs or firewalls, Biryukov et al. proposed a deanonymization

method that identifies the client of the transaction initiator

by its eight entry nodes [8]. In 2015, the Bitcoin community

responded to these attacks by changing the network’s flooding

mechanism from trickle to diffusion. Fanti et al. analyzed

the anonymity properties of both mechanisms and concluded

that Bitcoin’s networking protocols offer poor anonymity

properties [9]. In 2019, Biryukov et al. introduced a novel

technique for linking Bitcoin transactions based on transaction

propagation times analysis [10].

The previous deanonymization attacks based on the analysis

of the P2P network mostly focus on Bitcoin. As far as we

know, now there is no related research on Ethereum.

VII. CONCLUSION

In this paper, for the first time we explored the feasibility

of deanonymizing Ethereum users based on P2P network

analysis. We observed that the attacker can make connections

with approximately 90% Ethereum synced full nodes. Based

on the well-connected supernode, the deanonymization with

basic estimators preliminarily indicate that the anonymity of

the Ethereum P2P network is pretty limited. To reduce the

influence of network delay, we implemented and evaluated a

ML-based estimator, which can further improve the success

rate of deanonymization to 88%. By the discussion of the

propagation mechanisms, we believe that Gossip is a better

choice for the Ethereum P2P network.

ACKNOWLEDGMENT

This work was supported by the Key Research and De-

velopment Program for Guangdong Province under Grant

2019B010137003, the Beijing Natural Science Foundation

under Grant M21037, and the Fundamental Research Program

of National Defence (JCKY2019211B001).

REFERENCES

[1] “GitHub - ethereum/devp2p: Ethereum peer-to-peer networking specifi-
cations”, April 2021. [Online]. https://github.com/ethereum/devp2p.

[2] Kaminsky, Dan. “Black ops of TCP/IP.” Black Hat USA 44 (2011).
[3] Lumezanu, Cristian, et al. “Triangle inequality variations in the internet.”

Proceedings of the 9th ACM SIGCOMM conference on Internet mea-
surement. 2009.

[4] Wang, Guohui, Bo Zhang, and TS Eugene Ng. “Towards network triangle
inequality violation aware distributed systems.” Proceedings of the 7th
ACM SIGCOMM conference on Internet measurement. 2007.

[5] Victor, Friedhelm. “Address clustering heuristics for Ethereum.” Interna-
tional Conference on Financial Cryptography and Data Security. Springer,
Cham, 2020.

[6] Béres, Ferenc, et al. “Blockchain is watching you: Profiling and
deanonymizing ethereum users.” arXiv preprint arXiv:2005.14051 (2020).

[7] Koshy, Philip, Diana Koshy, and Patrick McDaniel. “An analysis of
anonymity in bitcoin using p2p network traffic.” International Conference
on Financial Cryptography and Data Security. Springer, Berlin, Heidel-
berg, 2014.

[8] Biryukov, Alex, Dmitry Khovratovich, and Ivan Pustogarov. “Deanonymi-
sation of clients in Bitcoin P2P network.” Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security. 2014.

[9] Fanti, Giulia, and Pramod Viswanath. “Deanonymization in the bitcoin
P2P network.” Proceedings of the 31st International Conference on Neural
Information Processing Systems. 2017.

[10] Biryukov, Alex, and Sergei Tikhomirov. “Deanonymization and linka-
bility of cryptocurrency transactions based on network analysis.” 2019
IEEE European Symposium on Security and Privacy. IEEE, 2019.

[11] “The Ethereum Network & Node Explorer”, April 2021. [Online].
https://www.ethernodes.org/.

[12] “Ethereum discv4-dns-lists”, April 2021. [Online].
https://github.com/ethereum/discv4-dns-lists.

[13] Bonneau, Joseph, et al. “Mixcoin: Anonymity for bitcoin with account-
able mixes.” International Conference on Financial Cryptography and
Data Security. Springer, Berlin, Heidelberg, 2014.

[14] Maxwell, Gregory. ”CoinJoin: Bitcoin privacy for the real world.” Post
on Bitcoin forum. 2013.

[15] Ruffing, Tim, Pedro Moreno-Sanchez, and Aniket Kate. “Coinshuffle:
Practical decentralized coin mixing for bitcoin.” European Symposium
on Research in Computer Security. Springer, Cham, 2014.

[16] Meiklejohn, Sarah, and Rebekah Mercer. “Möbius: Trustless tumbling
for transaction privacy.” (2018): 881-881.

[17] Seres, István András, et al. “Mixeth: efficient, trustless coin mixing ser-
vice for ethereum.” International Conference on Blockchain Economics,
Security and Protocols (Tokenomics 2019). Schloss Dagstuhl-Leibniz-
Zentrum fuer Informatik, 2019.

[18] Androulaki, Elli, et al. “Evaluating user privacy in bitcoin.” International
conference on financial cryptography and data security. Springer, Berlin,
Heidelberg, 2013.

[19] Reid, Fergal, and Martin Harrigan. “An analysis of anonymity in the
bitcoin system.” Security and privacy in social networks. Springer, New
York, NY, 2013. 197-223.

1409

