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Abstract—With the development of software-defined network-
ing (SDN) and network function virtualization (NFV), the service
function chain (SFC) has become a popular paradigm for
carrying and completing network services. In this new computing
and networking paradigm, virtual network functions (VNFs) are
deployed in software entities/virtual machines through physical
device networks in a flexible manner to improve resource
utilization and reduce management effectiveness. In this case,
it is critical to effectively deploy SFCs within an acceptable
time to improve quality of service, while meeting the constraints
of the physical network. In this paper, we propose an adap-
tive deep reinforcement learning based method for the online
deployment of SFC requests with different QoS requirements,
called DRL-Deploy. DRL-Deploy integrates graph convolutional
neural networks to effectively extract physical network features
and then adopts a parallel method to improve training efficiency,
which can converge to the best state. We compare with existing
benchmarks, and extensive experiment results show that DRL-
Deploy outperforms all others in terms of acceptance rate and
long-term average revenue by 8.6% and 22.9%, respectively,
while reducing long-term average cost by 36.4%.

Index Terms—Deep reinforcement learning, network func-
tion virtualization, software-defined networks, SFC deployment,
graph convolutional network

I. INTRODUCTION

It is ubiquitous to place middleboxes in today’s networks

to provide customers with various network services. The

traditional middlebox is implemented by dedicated hardware

equipment, which leads to higher infrastructure and manage-

ment costs [1]–[3]. Software-defined networking (SDN) is a

new network paradigm that can separate the control plane

from the data plane and centrally manage it through the SDN

controller [4], [5]. At the same time, through network function

virtualization (NFV) technology [6], Internet service providers

(ISP) can separate network functions from proprietary and

dedicated hardware, and can use virtual network functions

(VNF) on standard off-the-shelf servers the form instantiates

them flexibly.

Based on SDN/NFV technology, the Service Function Chain

(SFC) standardized by the Internet Engineering Task Force

(IETF) defines a set of ordered or partially ordered VNFs. For

SFC requests, traffic needs to be directed to the sequence of

the specified VNF that is traversed in a predefined order. With

proper programming abstraction, the dynamic deployment of

SFC requests can be performed in a way that greatly reduces
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the capital expenditure (CAPEX) and operational expenditure

(OPEX) of the ISP. However, in a physical network, VNFs can

be flexibly placed in different network nodes. For example,

in Figure 1, There are 5 switching nodes and 4 functional

nodes (nodes that can place VNFs) in the physical network.

For a newly arrived service function chain request, the source

node and destination nodes are A and H respectively. We

need to transfer the user data flow the four VNF instances

are processed in sequence. Because the physical network

is complex, there are many deployment methods for this

SFC request (for example, lines of different colors in the

figure). Therefore, it is a challenge for ISPs to minimize the

total CAPEX/OPEX with the SFC deployment. In addition,

due to limited network resources and the order of VNFs in

SFC, the optimal deployment of SFC requests should focus

on optimizing network performance and reducing resource

consumption.

In addition, to obtain the best strategy to solve the SFC

deployment problem, most works currently use existing rout-

ing algorithms and heuristics based on rules, but this method

is usually based on large-scale iterations and calculations,

which will lead to higher computational cost and lower time

efficiency [10]. At the same time, heuristic methods cannot

adapt to continuous changes in the network system. Different

network services usually have different QoS constraints [3],

[12], [13], such as bandwidth, waiting time, etc. and traffic

characteristics [14], [15], such as flow rate, packet size, etc.

Therefore, an adaptive online method is needed to automati-

cally deploy SFCs with different requirements.

Reinforcement learning (RL) is used as a learning archi-

tecture and uses deep learning techniques [16], [17], such as

multilayer neural networks, as automatic feature extractors.

It performs well on a series of complex sequential decision

problems [18], such as AlphaGo and adaptive video flow.

In RL, the agent starts from ignorance, and gradually learns

the required behaviors by exploring the external environment.

When the agent obtains the network status, it transforms the

status into advanced functions and generates action. The envi-

ronment does this and returns the reward signal to the agent.

The reward signal is different from the traditional optimization

goal. It does not necessarily maximize the performance of

the current network state, but can achieve better performance

in the future. The agent then uses the reward signal to

dynamically improve the generation of its next action. As
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the improvement continues, the agent will eventually converge

to a strategy that can maximize the cumulative reward for a

long time without any clear goal function and optimization

goal. After the agent is trained, it only needs one step, that

is, the forward calculation of the neural network, to generate

an effective strategy through the original state input, which

can reduce the computational complexity and solve the SFC

deployment problems at the same time.

In this paper, we focus on SFC deployment issues. Given

the challenge introduced by SFC, there are two problems

that should be solved: (i) how to minimize the total network

cost with optimal VNF placement; (ii) How to automatically

deploy SFCs with different requirements online and adaptively.

To solve the problems raised above, we first introduced the

Markov Decision Process (MDP) model to capture dynamic

network state transitions. The state of the MDP model is

structured like the current network state (for example, CPU,

memory, and latency, etc.), the deployment result of the

currently running SFC, and arrival requests with different

QoS requirements (for example, required CPU, memory, band-

width, and maximum allowable delay, etc.). Then, we propose

a novel SFC deployment algorithm (DRL-Deploy) based on

deep reinforcement learning (DRL) technology and graph

convolutional neural networks which extract the features of the

physical network. The reinforcement learning model of DRL-

Deploy is constructed based on Asynchronous Advantage

Actor-Critic(A3C) [21], which can realize the deployment of

SFC request online. Our contributions are as follows:

• We formulate the online SFC deployment problem as the

Markov Decision Process (MDP) model to describe the

variation of the network state, where the network changes

are automatically and continuously represented as a series

of the state transitions.

• We propose an adaptive service function chain deploy-

ment scheme DRL-Deploy based on deep reinforcement

learning. Particularly, for automatically extracting spatial

features in irregular graph topologies, i.e., the physical

networks, we use learning agents based on a new type of

neural network for graph convolutional networks. At the

same time, We use a popular parallel strategy gradient

training method to ensure the efficiency and robustness

of the sampled training experience, while optimizing the

learning agent.

• We conducted extensive simulation experiments on the

DRL-Deploy method to verify its performance. Exper-

imental results show that compared with existing ap-

proaches, the proposed DRL-Deploy can improve the ac-

ceptance ratio, the long-term average revenue and reduce

the long-term average cost.

The rest of the paper is organized as follows. In Section

II, we introduce related work of SFC deployment problem. In

Section III, we provide the system model and formal definition

of the problem. The details of DRL-Deploy approach are

presented in Section IV. Section IV presents the simulation

results. Finally, we conclude our work in Section V.

Fig. 1: Example of sfc deployment.

II. RELATED WORK

In recent years, solving the problems of SFC request

deployment and routing path selection has become a hot

issue in academia, and many solutions have been proposed.

Paper [22] and [23] separately studied the VNF layout and

routing optimization problems, and formulated them as a

Mixed Integer Linear Problem (MILP) model. Considering the

resource consumption of links and nodes in a distributed cloud

environment, Paper [10] proposed a novel method based on

feature decomposition to solve the problem of SFC deploy-

ment and linking. Paper [24] and [25] respectively proposed

the method of calculating the routing path by connecting

the established VNF instances in a predefined order using

the graph layering method. Paper [26] Consider the SFC

VNF selection and flow control issues, and formulate it as

an integer linear programming (ILP) model, whose goal is

to maximize network throughput in an environment where

SDN/NFV is enabled. To maximize revenue and minimize the

cost of infrastructure provider (InP), [20] uses a greedy load

balancing method to place each VNF in turn, and then uses

the shortest path route to embed each virtual link. The Monte

Carlo Tree Search (MCTS) method is used to solve the SFC

request deployment problem and maximize the acceptance

rate of requests [27]. [28] proposed a method of constructing

an SFC request routing path and realizing load balancing by

considering multi-resource constraints and flow characteristics.

In addition, the commercial SDN controller opendaylight

already supports four SFC scheduling algorithms, including

random, round-robin, load balancing , and shortest path [29].

However, all of these mentioned solutions are rule-based and

cannot realize the intelligent flow control of SFC requests,

which usually leads to complicated strategy design and low

time efficiency of routing path calculation.

Faced with the huge increase in network traffic and the

decline in Internet service provider (ISP) profits, deep re-

inforcement learning seems to be a feasible method for

effective routing path calculation through intelligent traffic

management [8], [9] proposed a sequence to sequence neural
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network Framework and policy gradient methods to solve

VNF placement and minimize the overall power consumption

of the system. NFVdeep [19] is an adaptive online deep

learning method that can automatically deploy VNF with

different QoS requirements. But it does not consider the traffic

problem between VNFs. The high computational complexity

and low time efficiency of the SFC request routing path

calculation method are solved through supervised learning

and unsupervised learning, but the training of deep learning

model is slow and time-consuming, which is very sensitive to

unknown SFC request and network dynamics. The ability to

adapt to changes is weak.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we define the physical network model and

the SFC request model, and formulate the SFC deployment

problem.

A. System Model
1) Physical Network: The physical network is considered

as an undirected graph, G = (V,L). Where V is a collection

of physical nodes composed of switching nodes VS and func-

tional nodes VS , We use u, v ∈ V to represent two physical

nodes, and uv ∈ L represents a physical link. The bandwidth

capacity of link uv ∈ L is denoted as Cbw
uv . We denote Cmem

u

as the memory capacity of u ∈ V , and Ccpu
u indicates the

CPU capacity of u ∈ V . The available resource ratios of link

uv ∈ L and node u ∈ V are symbolized as rbwuv ,rmem
u and rcpuu ,

respectively. All the symbols and variables of this section are

listed in Table I.
2) Service Function Chain Requests: In this paper, each

SFC request consists of an ingress node, and an egress node

and a sequence of VNF requests. A 4-tuple, {Si, Ti, Qi,

Ψtd
i } is used to represent SFC request i, where Si and

Ti represent the ingress node and egress node, respectively.

The set of VNFs requested by SFC request i is denoted

by Qi = {Q1
i , Q

2
i , ..., Q

l
i}, l = |Qi|, where Q1

i , Q
2
i , ..., Q

l
i

represent the 1st, 2nd, ..., lth VNF requests in Qi, respectively.

Ψtd
i means the maximum tolerated delay of SFC request i. We

use Gi = (Vi,Li) to denote the service function graph of SFC

request i. Service function graph is a directed graph, and the

directions of links satisfy the order constraint of VNF requests.

In service function graph, the parameters ū, v̄ ∈ Vi represent

two VNF request nodes, and ūv̄ ∈ Li is the link connecting

node ū and v̄ in Gi. When dealing with SFC request i, duv , du
denote the delays suffered in u ∈ V and uv ∈ L, respectively.

The maximum tolerable delay of SFC request i is symbolized

as Ψtd
i

B. Problem Formulation
In this section, we describe the SFC deployment problem

for SDN/NFV.
For SFC request i, the consumptions of bandwidth, memory,

and CPU cannot exceed the available resources on links and

nodes, respectively, which are ensured as∑
ūv̄∈Li

bwi,ūv̄z
ūv̄
i,uv ≤ Cbw

uv r
bw
uv , ∀uv ∈ L, (1)

TABLE I: SYMBOLS AND KEY NOTATIONS

Symbols and Variables Description

Physical Network

G = (V,L) Physical network G with the sets of nodes
V and links L, u, v ∈ V , uv ∈ L.

VS , VF
Switching nodes and functional nodes
in the physical network.

Cbw
uv ,Cmem

u ,Ccpu
u

Capacities of bandwidth, memory and CPU
of link uv ∈ L and node u ∈ V .

rbwuv ,rmem
u ,rcpuu

Available ratios of bandwidth, memory and
CPU of link uv ∈ L and node u ∈ V .

duv ,du Delay on link uv ∈ L and node u ∈ V .

Service Function Graph

Gi = (Vi,Li)
Service function graph Gi with the sets
of nodes Vi and links Li, ū, v̄ ∈ Vi,
ūv̄ ∈ Li.

Si, Ti, Qi

The ingress node, egress node and set
of necessary VNF requests of SFC

request i;Qi = {Q1
i , Q

2
i , ..., Q

l
i}, l = |Qi|.

cpui,ū, memi,ū
Cpu and memory required by VNF
node ū ∈ Vi.

bwi,ūv̄
Bandwidth required by link ūv̄,
ūv̄ ∈ Li.

Ψtd
i the maximum tolerable delay of SFC request i.

Binary Variables
zūv̄i,uv Whether ūv̄ ∈ Li traverses link uv ∈ L.

zūi,u
Whether ū ∈ Vi is served by function
node u ∈ VF .

∑
ū∈Vi

memi,ūz
ū
i,u ≤ Cmem

u rmem
u , ∀u ∈ VF . (2)

∑
ū∈Vi

cpui,ūz
ū
i,u ≤ Ccpu

u rcpuu , ∀u ∈ VF . (3)

Here, we use the binary variables zūv̄i,uv to indicate whether

ūv̄ ∈ Li traverses the link uv ∈ L. The variables zūv̄i,uv equal

1, if ūv̄ ∈ Li traverses the link uv ∈ L, and 0 otherwise. Also,

the binary variable zūi,u is used to indicate whether ū ∈ Vi is

served by the function node u ∈ VF . zūi,u equals 1, if ū ∈ Vi
is served by the function node u ∈ VF , and 0 otherwise.

As shown in Eq.(4), the total end-to-end delay which

consists of the delay of links and nodes in a path cannot exceed

the maximum tolerable delay of SFC request i:∑
uv∈L

∑
ūv̄∈Li

duvz
ūv̄
i,uv +

∑
u∈VF

∑
ū∈Vi

duz
ū
i,u ≤ Ψtd

i . (4)

We must guarantee that the links on the path to embedding

SFC request i are connected head-to-tail as

∑
u∈V

∑
ūv̄∈Li

(
zūv̄i,uv − zūv̄i,vu

)
=

⎧⎨⎩
1, u = Si,
−1, u = Ti,
0, otherwise.

(5)

We should ensure that each VNF instance of SFC request i

can be only placed on one function node as:∑
u∈VF

zūi,u ≤ 1, ∀ū ∈ Vi, (6)

where the binary variable zūi,u is used to indicate whether VNF

instance ū ∈ Vi of SFC request i is placed on function node
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u ∈ VF . And zūi,u equals 1, if ū ∈ Vi is placed on u ∈ VF ,

and 0 otherwise.

After all the above constraints, for SFC request i, the

consumption of CPU, memory, and bandwidth resources can

be calculated:

CPU(Gi) =
∑
u∈V

∑
ū∈Vi

cpui,ū · zūi,u (7)

MEM(Gi) =
∑
u∈V

∑
ū∈Vi

memi,ū · zūi,u (8)

BAND(Gi) =
∑
uv∈L

∑
ūv̄∈Li

bwi,ūv̄ · zūv̄i,uv (9)

So the total resource cost of SFC request i is:

COST(Gi) = ηcpu·CPU(Gi)+ηmem·MEM(Gi)+ηbw·BAND(Gi)

(10)

Among them, ηcpu, ηmem, ηbw are weighting factors that

weigh different costs. At the same time, for SFC request i, if

SFC request i is successfully deployed, the revenue REV(Gi)
is:

REV(Gi) =
∑
ū∈Vi

(
cpui,ū +memi,ū

)
+

∑
ūv̄∈Li

bwi,ūv̄ (11)

As shown in Eq.(12), the goal of our work is to obtain

the path of SFC request i that has the minimum cost and the

maximum benefit.

Minimize COST(Gi)

Maximize REV(Gi)
(12)

C. MDP Model

To deal with real-time network variations caused by stochas-

tic arrival and departure of requests, we introduce the concept

of time slot τ , which can be defined as the integral multiple

of a constant time period Δ. At each time slot Δ, the system

executes the following procedures: rescanning the physical

network, receiving arriving requests, making SFC deployment

decisions, and then updating the network states. In particular,

we define a list Rτ to represent arriving requests at time slot

τ . With all these preparations, we now formally present the

MDP model, which is typically defined as < S,A,P,R, γ >,

where S is the set of discrete states, A is the set of discrete

actions, P : S ×A×S is a transition probability distribution,

R : S ×A is the reward function, and γ ∈ [0, 1] is a discount

factor for future rewards.

1) State Representation: For each state st ∈ S in the frame-

work should include two parts, that is, the features of substrate

network and the features of arrival requests being processed,

which is represented by st =
(
spt , s

i
t

)
. Here, spt = (A,X)

represents the current state of the physical network, where

A ∈ R
|V|×|V| is the feature matrix of network represents the

link features of the physical network. And X is the feature

matrix of physical nodes, which contains the available ratios

of bandwidth, memory and each type of VNF’s CPU of node

u ∈ V . sit =
(
gingi , gegi , glasti ,Ψmem∗

Qj
i

,Ψcpu∗
Qj

i

,Ψe
i

)
is the

current state of SFC request i. Noting that the values of spt

are in the range of [0,1], we encode u ∈ V based on binary

coding. The binary codes of the ingress and egress nodes of

SFC request i are denoted as gingi and gegi . The length of the

binary code q satisfies 2q−1 ≤ |V| < 2q . glasti represents the

binary code of the node successfully placed by the previous

VNF in SFC request i. If this VNF is the first in SFC request i,

then glasti is the ingress node. The parameters Ψmem∗
Qj

i

,Ψcpu∗
Qj

i

represent the normalization of VNF Qj
i resource consumptions

of SFC request i in nodes. Ψe
i is represent the embedding result

of the current SFC request i. Each VNF of the current SFC

request i is set to 1 if it has been placed on the node and 0

otherwise.

2) Action Definition: The agent action set is defined as:

A = {1, 2, ..., |VF |}. |VF | indicates the number of function

nodes on which VNF instances can be placed.

3) Reward Description: The reward signal is designed to

encourage the agent to deploy SFCs to maximize the long-

term average revenue and minimize the long-term average cost.

Generally, a return positive reward is returned for a successful

placement and a negative one returns vice versa. However,

successful actions themselves may also vary as they may lead

to many possible state representations, and thus make the long-

term accumulative rewards different. To make the difference

between “slightly good” and “really good” actions, we need to

design the reward function more precisely. To achieve a high

acceptance ratio, we should encourage successful placement

actions. In addition, the learning agent needs not only to make

successful but also cost-efficient actions. A better placement

policy will consume fewer physical network resources when

processing the same SFC request. According to the above two

aspects, we design the reward function as:

Reward =

{
γa

REV(at)
COST(at)

, action at is successful,

−1, otherwise.
(13)

where γa is the discount factor that starts from (1/Size (Qi))
and gradually increases to 1 when the last VNF of SFC request

is in processing, and Size (Qi) means the VNF numbers of

an SFC request. COST(at) and REV(at) indicate the cost and

revenue of the action at.

IV. AN A3C-BASED DEEP REINFORCEMENT

LEARNING APPROACH FOR ONLINE SFC

DEPLOYMENT

In this section, we begin with the architecture of DRL-

Deploy together with its neural network design. Then we

introduce that how this adaptive online DRL approach, DRL-

Deploy works to deploy SFCs with different QoS require-

ments. Finally, we introduce the A3C-based training procedure

of DRL-Deploy.

A. Architecture of DRL-Deploy

With MDP, we can automatically and continually character-

ize the network traffic variations and network state transitions.

Next, we need to find an appropriate, efficient SFC deployment

policy that can automatically take appropriate actions in each
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state to achieve a high reward. Thus, we propose DRL-Deploy,

an adaptive, online A3C-based DRL approach to adaptively

deploy SFCs with different QoS requirements.

The architecture of DRL-Deploy is illustrated in Figure 2.

To explore the non-Euclidean structure of network topology,

we utilize GCN [7] based on semi-supervised learning to

extract features of the physical network. At each time step

t, the current state of physical network spt = (A,X) is

fed into a GCN layer to learn a new representation matrix

Zt ∈ R
|V|×Ugcn , where Ugcn is the units number of GCN

layer. The arithmetic operation of GCN is briefly formalized

as:

Zt = GCN (spt ) = σ
(
D̃−

1
2 ÃD̃−

1
2XW

)
, (14)

where σ is the activation function, W is the trainable

parameters. D̃−
1
2 ÃD̃−

1
2 is the approximated graph con-

volution filter that is similar to the convolutional neural

network(CNN).D̃ii =
∑

j Ãij and Ã = A+Λ is the adjacency

matrix of physical network G with added self-connections

using a renormalization trick, where Λ is the identity matrix.

With DRL-Deploy, the agent is designed as an actor network

and a critic network. A policy is a probability distribution over

legal actions π : π (st, at), which indicates the probability to

take an action at under a state st. We first splice and convert

the physical network state spt processed by GCN and service

function chain state sit into a single-column vector, and then

pass through the complete connection layer to make the input

size and the action space size consistent. To interpret the output

as a probability distribution, we use the well-known softmax

layer after the output of the complete connection layer. The

softmax function converts any real vector into a vector with a

range of (0,1) on each index, and the sum of this vector is also

1, without changing the relative order of the previous vector.

Now, the learning agent can use this probability distribution

to select actions.

p
ts tZ

i
ts

p
ts tZ

i
ts

State St

Actor Network
Full connection

layer Softmax 
Layer

Policy

Critic Network

Single
Neuron
Output

Value

H

SFC 
Request:

Ingress
(A)

Egress
(H)

Fig. 2: Architecture of DRL-Deploy.

B. Adaptive, Online Approach for SFC Deployment

To efficiently deal with the dynamic network variations, we

introduce the time slot as defined previously. During each

time slot τ , the system successively processes all requests

in Rτ , making a series of decisions about whether to reject

or accept each SFC request and then updates the network

states. To reduce the large discrete action space, we devise a

serialization-and-backtracking method, which deals with only

one VNF within each MDP state transition. DRL-Deploy

serially deals with the VNFs of an SFC request and backtracks

to the previous network state if an SFC request cannot be

completely deployed(i.e., some VNF(s) of the SFC request

cannot be placed due to the resource shortage, or the latency

or bandwidth constraint of the request can not be satisfied).

There are two cases between every two time slots. In the

intra-time slot, when there are several arriving requests in a

time slot. DRL-Deploy sequentially deals with these arriving

requests, specifically one VNF of an SFC request after another.

In this case, an MDP state transition happens when a VNF is

deployed or rejected. In the inter-time slots, in this case, no

action can be taken and the network state stays the same.

The whole procedure of DRL-Deploy is listed in Algorithm

1. The judgment of whether Qj
i is received in line 10 means

that the node meets the resource requirements requested by the

service function chain, and the shortest path algorithm(i.e.the

Dijkstra algorithm) is used to find the path between the node

placed by the previous VNF Qj−1
i and the node. If it is not

found, then Qj
i is rejected and Gi is rejected. In special cases,

when Qj
i is the first VNF requested by the service function

chain, the previous node is represented as the ingress node.

When Qj
i is the last VNF requested by the service function

chain, it also needs to find the path between Qj
i and the egress

node.

C. Learning Algorithm

We adopt an Asynchronous Advantage Actor-Critic(A3C)

algorithm [21], an advanced version of the actor-critic based

policy gradient method for training. This algorithm makes two

major improvements. Firstly, it uses the advantage function

instead of the mere state-action value function which can

reduce the variance of training experience. Second, it is a

”master-worker” parallel training architecture composed of

multiple worker agents U and a master agent. There are two

networks in this algorithm: the actor network(with a set of

parameters θ), which is used to generate policy πθ, and the

critic network(with a set of parameters θv), which generates

the estimation of values in different states V πθ(st;θv) and

helps compute the advantage function. In principle, these two

networks share a similar structure except for the output layer.

The traditional policy gradient method uses the following

gradient of accumulative discounted expected rewards:

�θEπθ

[ ∞∑
t=0

γtrt

]
= Eπθ

[�θlogπθ (s, a)Q
πθ (s, a)] (15)

where Qπθ (s, a) is the state-action value function that esti-

mates the expected long-term return of action a derived from

policy πθ under state s. However, the variance of Qπθ (s, a)
is usually high, making the training process unstable. And if a

state is in a good position, the Q value will stay high regardless

of actions picked under this state, and it can overlook the
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Algorithm 1 The DRL-Deploy Procedure

1: Begin:Initiate time slot τ ← 1
2: while Rτ = ø do
3: τ ← τ + 1
4: end while
5: Select an SFC request Gi from Rτ based on the arriving

time

6: Initiate i← 1, j ← 1
7: for t← 1, T do
8: Initiate state st
9: Take action a from A to place Qj

i

10: if Qj
i is accepted then

11: j ← j + 1, st ← st+1

12: end if
13: if Gi is rejected or j > |Qi| then
14: if Gi is rejected and j > 1 then
15: Backtrack the network state to st−j+1

16: end if
17: if Rτ is all processed then
18: repeat
19: τ ← τ + 1
20: until Rτ = ø
21: Select a new SFC request G′1 from Rτ

22: Reset i← 1, j ← 1
23: else
24: Select request Gi+1 from Rτ

25: i← i+ 1
26: end if
27: end if
28: Calculate the reward Rt

29: end for

difference between actions. Therefore, We use the advantage

function instead of Qπθ (s, a), the advantage function indicates

how better is the current action a from the ”average action”

derived from the corresponding policy under a certain state s.

Based on the Bellman equation, the advantage function can be

expressed as:

Aπθ (s, a) = rt + γV π
θ (st+1)− V πθ (s) (16)

where V πθ (s) is the state value function that estimates the

accumulative return under state s. And γ ∈ (0, 1) denotes the

discount factor.

The update of actor network follows the policy gradient

training method:

θ ← θ+α
∑
t

�θlogπθ (st, at)A
πθ (st, at)+β�θH (πθ (· | st))

(17)

where H (·) is the entropy of the policy at each time step, and

πθ (· | st) indicates the probabilistic distribution over actions

under the states st. This entropy term is used as regularization

to encourage the agent to explore the action space. Finally, α
is the learning rate of the actor network, and β is a decaying

factor that starts with a large value but shrinks as the training

proceeds.

Algorithm 2 The DRL-Deploy With Parallel Training Algo-

rithm

1: /**Master**/

2: Initialize the actor network and critic network;

3: Initialize the number of workers U ;

4: for u in U do
5: Create a worker agent w [u] with a same copy of actor

network and critic network;

6: end for
7: while TRUE do
8: for u in U do
9: Collect the experiences generated by worker [u];

10: end for
11: Update the parameter of actor network and critic net-

work using previously collected experiences under pol-

icy gradient training method;

12: for u in U do
13: Push the newest version of actor network and critic

network to w [u];
14: end for
15: end while
16: /**Worker**/

17: Initialize the actor network and critic network;

18: Initialize the independent environments for SFC deploy-

ment;

19: while TRUE do
20: Receive the parameters of actor network and critic

network from master;

21: Sample a trajectory from the environment using the

copied network;

22: Send the trajectory as {st, at, rt, st+1} experience tu-

ples to master;

23: end while

The critic network is updated using the standard Temporal-

Difference(TD) method:

θv ← θv + α′
∑
t

�θv (rt + γV π
θ (st+1; θv)− V πθ (st; θv))

2

(18)

where V πθ (·; θv) is the estimation of value function under a

certain state, and α′ is the learning rate of the critic network.

And the A3C-based training procedure is listed in Algorithm

2.

V. PERFORMANCE EVALUATION

A. Simulation Setup

In the simulation, we randomly generate a physical network

with 100 nodes and 250 links, following the Waxman topology

model, which imitates a medium-sized InP. We treat all nodes

as functional nodes. The resources of nodes and the bandwidth

of links in the physical network are uniformly distributed with

50 to 150 units. We have also generated many service function

chain requests. Each service function chain request contains

2 to 15 VNFs. The computing power of each VNF follows

a normal distribution between 1 and 50 units. The bandwidth
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requirement of each logical link follows a normal distribution

between 1 and 50 units. The service function chain requests

arrive according to Poisson distribution, and there is an average

of 4 requests in 100 time units. The duration of each request

follows an exponential distribution with an average of 1000

time units. The timeline we generated lasts about 50,000 time

units, which contains about 2,000 requests. We divide the

requests evenly into two groups: the training group and the

test group.

The whole model architecture is built with Tensorflow and

Adam optimizer is employed to update the parameters of

neural networks. Our simulation experiments are executed on

a computer with a 3.60 GHz Intel Core i7-7700 CPU and 16

GB RAM. In the training phase, actors utilize ε-greedy search

strategy to select actions according to the probability distri-

butions, which facilitates sufficient exploration and excellent

exploitation. In the testing phase, only the actor network of the

trained agent works to place SFC requests, using the greedy

search strategy. The values of simulation parameters are given

in Table II.

TABLE II: SIMULATION PARAMETERS

Name Value Description
U 4 the number of actor networks

ηcpu, ηmem, ηbw 1 the weighting factors of different costs
α 0.005 the learning rate of actor network
α′ 0.01 the learning rate of actor network
γ 0.95 the discount factor of TD error

Ugcn 64 the units number of GCN layer

B. Baseline Algorithms

To verify the effectiveness of the proposed DRL-Deploy

approach, we select the following two approaches for com-

parison:

• GRC: A heuristic-based algorithm based on global re-

source capacity to map VNFs onto physical nodes.

• MCTS: A RL-based algorithm using Monte Carlo tree

search to make the SFC placement decision.

Both of them utilize the shortest path algorithm to conduct

link mapping.

C. Simulation Results

1) Acceptance Ratio: The SFC requests acceptance ratio

of the physical network of the duration step 0 ∼ T can be

defined as:

ACR(T ) =

∑T
t=0 NUM SFC S∑T
t=0 NUM SFC

(19)

where NUM SFC S and NUM SFC are the number of

successful SFC request deployment and the numbers of total

SFC requests, respectively. The acceptance ratio of all the

three algorithms in the test group is illustrated in Fig.3. We

can observe that at the beginning, the acceptance ratios of

all the three algorithms decrease because the resources of

the physical network are gradually occupied as SFC requests

arrive. At the end of time step T, DRL-Deploy showed the

highest acceptance ratio of 77.35%. Compared to GRC and

MCTS, DRL-Deploy improves performance up to 8.6% and

23.2%. This shows that our algorithm can reasonably allocate

resources for each SFC in the physical network with limited

resources, thereby deploying more SFC requests.

2) Long-term Average Revenue and Cost: The long-term

average revenue and cost of the duration step 0 ∼ T can be

decided by:

REV(T ) =
∑T

t=0 REV(Gt)

T
(20)

COST(T ) =
∑T

t=0 COST(Gt)

T
(21)

where REV (Gt) and COST (Gt) denotes the revenue and cost

of successful SFC request deployment arrived at time step t,

respectively. In Fig.4 and Fig.5, we compare the long-term

average revenue and cost of these three algorithms when SFC

requests arrive in sequence. We can observe that due to the su-

periority of the DRL-Deploy algorithm in terms of acceptance

rate, the DRL-Deploy algorithm will be significantly higher

than other algorithms in terms of long-term average income.

At the end of time step T, DRL-Deploy reached the highest

long-term average income of 5.94, which was 22.9% and

53.6% higher than GRC and MCTS, respectively. At the same

time, the DRL-Deploy algorithm has significantly reduced the

long-term average cost. The lowest long-term average cost of

DRL-Deploy is 5. Compared with GRC and MCTS, this is a

decrease of 62.4% and 38.2%, respectively. This means that

our algorithm can provide better SFC deployment quality and

make more efficient use of physical network resources.

3) Resource Utilization: To reflect the superiority of our

algorithm in resource utilization, in Fig.6, we compare the

average CPU utilization of the physical network at time step

T. In the whole operation process, with a relatively high

acceptance rate, the DRL-Deploy algorithm has a high CPU

average node utilization. At the end of time step T, DRL-

Deploy shows high node utilization in the physical network.

Compared with GRC and MCTS, the node utilization rate

has increased by 36.4% and 71.6%, respectively. This shows

that our algorithm can intelligently make SFC deployment

decisions based on the inherent information required by the

physical network and SFC.

VI. CONCLUSION

In this paper, we proposed a novel DRL-based method

for the SFC deployment problem by formulating it as the

MDP model, called DRL-Deploy. DRL-Deploy uses GCN to

effectively extract the characteristics of the physical network.

In addition, we designed the A3C algorithm to speed up the

training process and enhance the robustness of the model.

Due to the sufficient information obtained from the environ-

ment, DRL-Deploy can intelligently generate SFC deployment

strategies with different QoS requirements, which helps to

improve the resource utilization of the physical network.
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