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Abstract—With the development of artificial intelligence(AI)
applications, a large number of data are generated from mobile
or IoT devices at the edge of the network. Deep learning tasks
are executed to obtain effective information in the user data.
However, the edge nodes are heterogeneous and the network
bandwidth is limited in this case, which will cause general
distributed deep learning to be inefficient. In this paper, we
propose Group Synchronous Parallel (GSP), which uses a density-
based algorithm to group edge nodes with similar training
speeds together. In order to eliminate stragglers, group parameter
servers are responsible for coordinating communication of nodes
in the group with Stale Synchronous Parallel and aggregating the
gradients of these nodes. And a global parameter server is re-
sponsible for aggregating the gradients from the group parameter
servers to update the global model. To save network bandwidth,
we further propose Grouping Dynamic Sparsification (GDS). It
adjusts the gradient sparsification rate of nodes dynamically
based on GSP so as to differentiates the communication volume
and makes the training speed of all nodes tend to be the same. We
evaluate GSP and GDS’s performance on LeNet-5, ResNet, VGG,
and Seq2Seq with Attention. The experimental results show that
GSP speedups the training by 45% ~120% with 16 nodes. GDS
on top of GSP can make up for some test accuracy loss, up to
0.82% for LeNet-5.

Index Terms—distributed deep training, gradient compression,
parameter server, gradient sparsification

I. INTRODUCTION

With the development of deep neural networks (DNNs),
the application of artificial intelligence in mobile devices with
limited resources is developing, such as face recognition [1]
[2], virtual/augmented reality (AR/VR) [3] [4], and so on.
These applications are computationally intensive and delay-
sensitive. If a large amount of data generated from the users’
devices is uploaded to the data center, it will bring obvious
delay and user privacy leakage. Fortunately, edge computing
can solve these concerns by collaborating edge computing
nodes (such as base stations, home gateways, edge servers,
and roadside units) with computing power.

Distributed deep learning trains the model in parallel by
deploying the model to distributed nodes. Among all parallel
strategies, data parallelism is a common method. It distributes
data equally to each node, and each node trains only a part
of the data to overcome the limitations of the computing
power and hardware storage of a single device, allowing
training tasks executed in parallel. However, in distributed
training, especially synchronous training, the most widely
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used optimization method, stochastic gradient descent (SGD),
requires the synchronization of parameters by transmitting
gradients among nodes. Therefore, the considerable communi-
cation overhead in data parallelism has become an important
bottleneck for accelerating training. Simply adding machines
will not achieve linear training acceleration. Therefore, the
parallelization strategy becomes extremely important in dis-
tributed training.

Communication strategies in data parallelism are divided
into synchronous and asynchronous. In synchronous data par-
allelism, all nodes compute gradients based on the same model
parameters. This means that in each training iteration, each
node has to wait for others until all nodes have completed their
computation. Take the most typical synchronous architecture
Parameter Server (PS) architecture as an example. Whenever
a node completes the gradient computation of the current
batch, it will upload the computation result to the parameter
server. The parameter server will store all the information
until all nodes have completed the model computation and
uploaded the gradients. After that, the parameter server will
apply a specific update mechanism to merge and then send
the gradients. In order to overcome the serious delay prob-
lem caused by the high-load nodes in the synchronization
strategy, the asynchronous method removes the constraints of
the synchronization method [5] [6] [7]. There is no need to
wait for each other between nodes and can be updated freely.
However, the problem with this is that the parameters are out
of date. Parameter staleness refers to the delay time between
a node obtaining parameters from the parameter server and
submitting parameters to the parameter center next time. Stale
Synchronous Parallel [8] [9] [10] is a solution that balances
the delay of synchronous methods and parameter staleness in
asynchronous methods to a certain extent.

However, in an edge environment, the computing speeds
of nodes are different, thus forming a hybrid heterogeneous
cluster based on the existing edge devices. None of the above
communication strategies can fully utilize the characteristics
of the hybrid cluster. What’s more, many experiments show
that communication overhead is also the bottleneck of large-
scale distributed training. Taking data-parallel training of
ResNet-50 as an example, the parameter size of ResNet-50
is about 100MB. Tensorflow training on Tesla K80 requires
181.40ms for each iteration, which means 550MB/s bandwidth



is required to avoid bandwidth saturation. Considering VGG-
16, a bandwidth of 2965MB/s or more is needed. Therefore,
in order to overcome this bottleneck, large-scale distributed
training requires gradient compression to reduce the number
of communication parameters.

In this paper, we focus on how to make full use of het-
erogeneous computing and limited communication resources
to achieve the best distributed training performance. First,
we propose Group Synchronous Parallel (GSP), which uses
density clustering to select the optimal number of groups,
and groups nodes with similar training speeds together. The
group parameter servers coordinates the nodes with SSP, and
a global parameter server coordinates the group parameter
server asynchronously. Moreover, the group parameter server
accumulates the gradients of the nodes several steps and
transmits the merged gradients to further reduce the com-
munication frequency. After each iteration, a node needs to
upload its local gradient to the group server and pull the
latest global model. We further propose Grouping Dynamic
Sparsification(GDS), which reduces the number of parameters
in communication through gradient sparsification. In addition,
differentiating the number of parameters uploaded by nodes
with different training speeds reduces the difference in training
speeds between groups and reduces the deviation of model
convergence.

Our critical contributions are summerized as follows:

o We use a density-based clustering method to cluster all
edge nodes, which can compute the best number of
groups. The clustering speed of this method is faster than
traditional iterative-based methods, including k-means.
GSP eliminates stragglers through clustering, thereby in-
creasing the training speed of the heterogeneous clusters.
Based on GSP, we then proposed a grouped dynamic
sparsification method, which effectively reduces network
bandwidth through gradient sparsification and reduces the
difference in training speed between nodes.

Compared with other distributed training communication
strategies, our method achieves acceleration of edge het-
erogeneous clusters.

The rest of this paper is organized as follows. In Sec.II, we
present the background and motivation of this paper. Sec.III
presents the architecture of GSP and its mechanism in detail.
In Sec.IV, we present GDS method based on GSP. We evaluate
the performance of GSP and GDS experimentally in Sec.V.
Related work and summary are in Sec.VI and Sec.VII.

II. BACKGROUND

Stochastic Gradient Descent. Given a neural network
model, the goal of deep learning is to find the model parame-
ters w* that minimizes the loss function F'(w) over the training

dataset, i.e.,
> (B

BeD

here, D is the labeled training dataset, and f(B,w) is the loss
value when using the parameters w to predict sample B. For
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mini-batch SGD [11], we have w41 = w; —
t, here 7 is the learning rate.

> Vfbw).

beB;

n:g: for iteration

gt = ()

\Bt

where g; is the gradients computed from batch B at iteration
t.
In data-parallel distributed training, mini-batch SGD is:

gt = NZ Z Vf bn>w1‘

n=1 bnGB

3

where N is the number of nodes.

Distributed communication strategy. Dai er al. [12] stud-
ied the convergence of a large number of models and algo-
rithms in the case of delayed updates during asynchronous
training, revealed the multiple effects of parameter staleness
on the convergence of the algorithm, and proposed a new
non-convex optimization SGD convergence analysis method,
which can reach the convergence rate of % To compensate
for the outdated parameters, Zheng et al. [13] proposed
Delay Compensation Asynchronous SGD (DC-ASGD), which
makes the optimization behavior of asynchronous SGD closer
to sequential SGD. They realize this method by using the
Taylor expansion of the gradient function and the effective
approximation of the Hessian matrix of the loss function.
They have performed comparative experiments on a variety
of models and datasets and get good performance.

Communication overhead. To reduce the communication
overhead caused by transmitting gradients in distributed train-
ing, a widely adopted method is gradient compression. Gradi-
ent compression is mainly divided into two directions: gradient
sparsification [14] [15] and gradient quantization [16] [17]. In
gradient sparsification, only part of the gradients is uploaded
after filtering all the gradients. Since most of the gradients are
close to 0 during the training process, gradient communication
frequently is unnecessary. In gradient sparsification, each node
only transmits the important gradients in each training step,
accumulates the unimportant gradients locally, and waits for
the next step. In PS architecture, each node only sends
important gradients to the server after backpropagation, that is,
Sparse Uploading Gradient. The server will aggregate sparse
upload gradients from all nodes, and then send the aggregated
gradients to the nodes. Locally at each node, unimportant
gradients are accumulated and become Storing Gradients.
After accumulation, the old storage gradients will be uploaded
together with the newly generated gradients to form a new
sparse upload gradient. Using this method, the compression
ratio has been greatly increased. Because in each training
step, only a small part of the gradient is involved in the
communication. Different from reducing overhead by simply
reducing the number of transmitted elements of gradient
sparsification, gradient quantization will transmit each element
and compress each element. After quantization, the number of
bits per element will be reduced. Since quantization still needs



to transmit each gradient element, the compression ratio is
constrained.

III. GROUPING SYNCHRONOUS PARALLEL

In this section, we propose Group Synchronous Parallel
(GSP) scheme. The edge nodes are density clustered according
to the training speed to accelerate the model training in PS
architecture. In order to reduce the synchronization waiting
time, nodes in the same group execute iteration within a
relaxed stale threshold. At the same time, a global parame-
ter server is set to reduce the frequency of communication
between different groups. In this way, all nodes communicate
in a semi-synchronous manner to achieve a balance between
waiting time and staleness.

A. Overview

Our solution decouples the relevance of iteration between
nodes with relatively training speed to overcome the serious
synchronous delay problem. This is achieved by a two-layer
parameter server architecture. Firstly, we use a density-based
clustering method to cluster edge nodes to calculate the
required number of groups. Then we set P group parameter
servers according to the calculated number, and they are
responsible for aggregating gradients in the current group and
transmitting weights between groups. We also set a global
parameter server for refining global model weights. Then, the
group parameter servers merge the gradients they receive from
the intra-group nodes, and then sends their sum to the global
parameter server to obtain the global model to further reduce
the frequency of communication. The architecture of GSP is
shown as Fig. 1.
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Fig. 1. The two-layer parameter server architecture of grouping synchronous.
The intra-group nodes communicate at the pace of SSP, and the different
groups communicate asynchronously. For node n, there are local model w™
and local data D™, {n = 1,...,N}. Due to the existence of the global
parameter server, the models of all nodes and servers are the same after
synchronizing with the global parameter server.

B. Grouping Algorithm

In a cluster with N edge nodes, we group the nodes
according to a density-based clustering method. We define the
difference in training speed between nodes as distance dis.
For each node n, we compute two metrics: its local density
pn and its distance s,, to nodes with higher density. And these
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metrics only depend on the distance between nodes. The local
density p,, of node n is defined as:

J

where dis,; represents the distance between node n and
node j. dis¢p, is the threshold distance. Only if the distance
between nodes is less than disyp, will they be considered as
neighboring nodes in the same group. We define the function
X as:

1, if z <0
otherwise.

(&)

pn 1s basically equal to the number of nodes whose distance
from node n is less than disy,. s, is determined by calcu-
lating the minimum distance between node n and any other
node with higher density:

©)

s; = min (disp;)
JiPj>Pn

For node with the highest density, we usually take s;
max;(disy;). Therefore, the center of the cluster is a node
with an abnormally large s.

we can set any number of groups. If the number is less than
P, the node with higher p and s will be preferentially set as
the group center. If the number is greater than P, all workers
with s > s° will be set as the center of the cluster, and other
workers with higher p will be given priority to become the
the center of the cluster. After obtaining the centers of cluster,
the remaining points are allocated to the same cluster as its
nearest neighbor, and the density is higher. Algorithm 1 shows
the details of finding the optimal number of groups P and the
detail information of the grouping process.

Based on density clustering, we get the optimal number
of groups P. The pu, {p = 1,2,..., P} group parameter
server is responsible for k, nodes in its group, and the total
number of nodes meets 25:1 k, = N. The global parameter
server aggregates the models from all the group parameter
servers asynchronously to obtain the global model. Moreover,
the number of communications between groups should be
reduced to further reduce communication overhead. For the
group parameter server of group p, the gradient of this group is
uploaded to the global parameter server every k,, times, so that
each node has approximately the same gradient contribution
to the global model. Through merging gradients, the number
of gradient transmissions of the py, group server can be
reduced to é of the original. Extending to the cluster, the
communication times of all groups can be reduced to the £
of the original, where N is the number of nodes, and P is the
number of the optimal group obtained by Algorithm 1. And
we summarize GSP as Algorithm 2.

C. Convergence Analysis

We prove the convergency rate of GSP. In Sequential SGD,
g(w¢) should be added to w; at step ¢, that is, wy = wp_1 —
ng(w;). However, in GSP, the global models some may have
updated by other edge nodes 7 times. So the update formula



Algorithm 1 Finding optimal P and grouping process

Algorithm 2 Grouping Synchronous Parallel (GSP)

1: Finding optimal P

2: input: G = (K, L), disp,, G(K, L) represents a set of
workers K and all connections L between each two nodes.

:P=0

: for £ in K do

pr. = GetNodesCountWithinDistance(k, dis;p.-, G)
end for
: for k in K do
sy=MinDistanceToHigherDensityNodes(k, p, G)
s' = |17\ > kek Sk
if 5, > s then

P+=1
end for

: return P

: Grouping process
cinput: G =K, L, p, s
: input: the number of groups P
: maxp K = FindNodesAsClusterCenter(P, p, s, G)
: for k in K do
if £ € maxp K then
k belongs to a new group
else

k belongs to the nearest high-density node group
end for

iS Witrt1 = Werr — Merrg(we). To analyze convergence, we
make the following assumptions.

Assumption 1 (smoothness and strongly convex): Loss
function F'(w) is Lo —smooth and p-strongly convex about w.
VF(w) is Ly —smooth about w and a constant H is the upper
bound of the expection of the || - ||3 norm of the gradients.

Assumption 2: Since most of the gradient elements are
close to 0 [14], we bound |[VF(w;) — g(we)|| < G/t, where
G is some constant.

Theorem 1: Set 7; = % With Assumptions 1 and 2, the
convergence rate of GSP is

L3L3H372
M6t2

L,HG  L3H%r?
p2t pit

EF(w;) — F(w*) < 7
Proof:

Using Eg(w;) = VF(w;) and the smoothness condition, we
have

EF(wi4rq1) — F(w7)
< Fwigr) = F(") + Fwisrs1) — Flwegr)
< Fwigr) = F(w") + (VF(Wigr), Wi r41 — Wigr)

Ly
+ 7\\Wt+r+1 — wipr|?
* L2nt2+TH2
< F(wigr) = F(W") = D4 r (VF(Wigr), 9(wr)) + Y
(8
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Node n in group p
1: Once receiving Ready from its group PS p
2: pull group p.h weights wP from group PS
3 wit = wP
4 91" = g7 Ly,enp VI (bn,wf)
5. push g to group PS
Group PS p
- ¢P is the accumulated gradients for p;;, group
- counterP counts local accumulations for py;, group

: receive g;* from node n
: wait until SSPScheduler(group p, node n) is Ready
if k, = counter? then

P = P + g¢'

send(¢?) to global PS

set P = 0 and counter? =0

WP = wglobal

else

o = ¢ + g7

counter? = counter? 4 1
end if

: return Ready

R A A e

: procedure SSPSCHEDULER(group p, node n)
if node n is not the fastest or within the threshold then

Return Ready
end if

The term —(V F(wiy+), g(wy)) in (8) can be expressed as
= (VF(wi4r), VF(wi4r)) + (VF(wigr), VF (Wegr)

— VF(wi)) + (VF(wigr), VE(wi) = Vg(wy))  9)
we analyze each term in (9) one by one.
Using Assumption 1, we have
—(VF (W), VE (W) < —p?||wpgr — w*[|?
2 2
< = (Flwrr) = F(w) (10)
2
Using VF(w;) is Lg-smooth (i.e., [[VF(witr) —
VE(wy)|| € £ ||wpsr — wel)), we have
(VE(Wisr), VF(wigr) = VE(wi))
SIVE @) IVE (@rgr) = VE(wi)|
LsH LyrH? S
< 57”0Jt+‘r — thQ < 3 77t2+j
2 2 4
7=0
L- L2H3 2
< L3l T (11)
2ptt(t + 7)
Under Assumption 2, we have
(VF(wiir), VE(wi) — g(wr))
SNVE @il IIVE(wi) = glwn) ]l
HG
< H||[VF(wi) = gwy)|| £ —— (12)



Putting inequality (10)-(11) in inequality (8), we have

* 2 *
EFWHHO*FW)SH*;:ﬁ@FWHH*FWD
L3L%H3T2 L HG L%H%Q (13)
2ut(t +1)2  pPt(t+7)  2ut(t+7)2
In the end, we get
LsL3H31?2 L.H L3H?72
EF(w) - F') < o2l LolG | IaH T,
QN 3 N2t2 2N4t2
L3L§H372 LoHG L%H27'2
N6t2 N2t M4t (14)

by induction. Theorem 1 is proved.

IV. GROUPING DYNAMIC SPARSIFICATION

In distributed training, in addition to the difference in com-
putation speed between nodes, the communication overhead
when multiple machines synchronize parameters is also a
bottleneck for accelerating training. Gradient compression is
used to reduce the number of parameters that need to be
transmitted. Under the traditional synchronization method, all
distributed nodes have the same sparsification ratio. However,
with GSP, the nodes are relatively asynchronous, and the
training speed among different groups is very different, and the
convergence of the model will be affected by outdated param-
eters. We propose Grouping Dynamic Sparsification (GDS)
to differentiate their communication time by setting different
sparsification ratios for nodes in different groups so that they
have similar total iteration time, including computation time,
compression time, and communication time. For compression
time, it is necessary to upload the gradients and corresponding
coordinates according to the calculated threshold, regardless of
the sparsification ratio. Therefore, the compression time is only
related to the computation performance. For communication
time, under the same network bandwidth conditions, a larger
sparsification ratio means shorter communication time.

:] compression time - communication time

- computation time
hiz

Group server p
| Group server p |

more gradients.

Fig. 2. Grouping Dynamic sparsification shorten the iteration gap among
groups and reduce communication time. Take group 1 and group p as an
example. The nodes in group 1 are stragglers for other nodes because the
computation speed of group 1 is the slowest. GDS on top of GSP eliminates
stragglers by reducing the communication time of group 1. After GDS, the
iteration time of all nodes is nearly the same.

More specifically, we set the basic sparsification ratio as s,
and the maximum sparsification ratio as s7***. The maximum
sparsification ratio is to ensure that each node uploads its
local gradients. For the group with the slowest computation
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speed, we set its sparsification ratio to s. with computation
time time?!°¥¢, For other group, the computation time is
timel. Thus, their sparsification ratio is min(se * time?/

timestowest  smaz) Since uploading sparse gradients and its
coordinates, the uploaded parameter amount is 25:1 2.-sP.
lg7| + Co, where |g7'| is the size of gradient elements and
Cp is a small constant representing the shape of the original

gradients.

The training speed is unstable affected by the fluctuation
of node physical performance and network bandwidth. So
we add a momentum to estimate the training time of the
next iteration based on the historical training time. Moreover,
in order to improve the efficiency of gradient compression,
we first sample a fixed proportion of nodes to compute the
threshold for each group roughly. GDS on top of GSP sparses
out some unimportant and stale local parameters and solve the
problem of model convergence deviation.

Algorithm 3 Grouping Dynamic Sparsification (GDS)

1: m¥ is the number of gradients for nodes in p;, group at
iteration t;
Se, sI'** are the basic upload ratio and the maximum
upload ratio respectively at epoch ¢;
time? is the average training time in p,, group at epoch
;mezlowest
Set gp =0
fort=1— T do
g =i+ VIb.wp):
Set threshold thr = the (m})*" lagest value of |g|
Mask = |g}*| > thr
g = gf © Mask;
9t = 9t © ~Mask;
wP = wP —ngp
end for
: CompressController
if e =0 then
time? = timeP
celse o

timer = time?_| x B+ time? x (1 — j3)
momentum factor
end it L
. timeslowest — imel meP
: timeg!owest = max(timey, ..., timel’)
- if time? = timeglowest then
sP = s

is the slowest group respectively at epoch e.

> s a

> group p is the slowest
: else

e~ o~

sP = min(se x time? [timeglowest  gmar)

> group p is not the slowest
end if

return m} = s? - |g?|
> |g7| is the size of gradient elements
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(a) LeNet-5 on MNIST. The accuracy of GSP is slightly lower than other
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(b) ResNet-18 on CIFAR-10. GSP is about 2x faster than BSP and SSP to
reach 92.0% accuracy, with an accuracy drop of about 0.9%.
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(c) VGG-19 on CIFAR-10. GSP reaches 91% accuracy faster than other
distributed communication strategies.
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(d) Test PPL of Seq2Seq with Attention on Multi30k. Compared with other
distributed paradigms, GSP is the fastest and has lower PPL than ASP ans
SSP.

Fig. 3. Distributed communication paradigms comparison on multiple deep
learning tasks.

V. EXPERIMENTS AND EVALUATION

A. Experimental Setup

1) Hardware and software: To evaluate the effectiveness of
GSP, we use the clusters with edge nodes varying from 4 to
32. The node group consists of mobile devices with GPU and
laptop computers, which are connected with 1Gbps Ethernet.
We implement all distributed communication strategies in PS
architecture with Ray [18].

2) Models and datasets: We trained our methods on
deep learning tasks, including computer version and natural
language processing. For image classification tasks, we use
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momentum SGD in all models. We set the hyperparameters
as Table.l.

TABLE 1
PARAMETERS OF GSP
Model Dataset Batch size / node | learning rate Ir decay epochs
LeNet-5 MNIST 64 0.001 - 200
ResNet-18 Cifar-10 64 0.1 0.1 at epoch 50 and 70 200
VGG-19 Cifar-10 64 0.01 0.1 at epoch 70 and 100 200
chZscq_wnh Multi30k 3 _ _ until
Attention convergence

3) Metrics: We trained all DL tasks on BSP, ASP, SSP
and our method. For stale synchronous, we set the staleness
threshold to 3. For the image recognition tasks, we compare
the training time and test accuracy; For machine translation
tasks, we compare training time and test perplexity (PPL).
We compared the iteration gap among groups, acceleration
speedup and gradient compression ratio (GCR) for GDS
experiments.

B. Results in GSP

The training curves of different communication methods on
16 edge nodes are shown in Fig.3. Fig.3(a) shows the experi-
mental effect of LeNet-5 on MNIST dataset, comparing base-
line (BSP), ASP, SSP and our GSP method. Fig.3(b) shows
the experimental effect of Resnet-18 on Cifar-10 dataset,
comparing baseline, ASP, SSP and GSP. Fig.3(c) shows the
performance of VGG-19 in cifar-10 dataset when baseline,
ASP, SSP and GSP are used. Fig.3(d) shows the performance
of Seq2Seq with Attention on the Multi30k dataset when using
baseline, ASP, SSP and GSP.

Let’s look at the accuracy and convergence speed of the
model. Compared with baseline, GSP achieved 45%~120%
convergence acceleration on the premise that the test accuracy
decreased by no more than 1.1%. Our explanation is that
the improvement of convergence speed may come from two
aspects. Firstly, it reduces the negative impact of stragglers on
the training speed of other nodes, so as to make full use of the
computing resources of nodes. Secondly, the group parameter
server accumulates gradients, thus reducing the frequency of
communication, and total communication time.

C. GSP with GDS

To evaluate GDS on top of GSP, we set the same hyper-
parameters in Table.I as GSP. Similar to [15], We also set
the sample ratio to 0.01 for sampling about 1% gradients and
set the basic sparsification ratio and the maximum maximum
sparsification ratio as 99.6% and 98.5% respectively. 99.6%
exponentially increases from 75%, 93.75%, 98.4375% in the
warm-up period. And 98.5% exponentially increases from
65%, 87.75%, 95.7125% in the warm-up period.

1) group gap with GDS. Fig.4 depicts that for LeNet-5,
ResNet-18 and VGG-19, the group gaps can be reduced to
75%, 8% and 14% respectively. For LeNet-5, GDS on top
of GSP has faster convergence speed. For ResNet-18 and
VGG-19, the training curves jitter slightly. For Seq2Seq with
Attention, the group gaps and training loss with GDS both are
almost the same as GSP.
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2) Test accuracy. Table II demonstrated GDS improves test
accuracy and reduces test PPL compared to simple GSP in
all experiments. We attribute the increase in accuracy and the
decrease in PPL to one reason: most of the gradients generated
in each step of training are useless for the convergence of
the model, and even some outdated parameters may affect
the convergence of the model. Gradient sparsification did not
upload these gradients to help generalization.

3) Convergence speed. Compared to SSP, GSP speedup

SSP
. GSP
Il GSP+GDS

IS

Speedup

8 1
# of training nodes

Fig. 5. Training speedup with 1Gbps Ethernet

training process with 1Gbps Ethernet on multiple training
nodes, as shown in Fig.5. GSP achieved a certain acceler-
ation because it improves the utilization of computing re-
sources. After using GDS, the communication computation
ratio ¢omumunication time g oreatly reduced. Therefore, the
computation time L T .

acceleration and expansion ability of distributed training are
greatly improved, especially when the network condition is

bad.

4) Compression ratio. We calculate the gradient compres-
sion ratio (GCR) to evaluate the reduction of communication
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volume:

. P kp
Szze[szl >0 9t + Col

size(Xn_y 97") ’
where C is a small constant related to the model, describing
the number of model layers and the shape of each layer
before sparsification, so that the gradients can be restored
on the group PS by the sparse gradients and corresponding
coordinates.

GCR

TABLE II
COMPRESSION RATIO OF DIFFERENT TRAINING TASKS.

Group gap
with GDS

75%

Model Method Gradient size

GSP
GSP+GDS
GSP
GSP+GDS
GSP
GSP+GDS
GSP
GSP+GDS

Accuracy/PPL

97.76%
98.58%
92.54%
92.75%
91.53%
92.27%
42.0995
36.8331

246.8KB
10.96KB
44.68MB
0.80MB
155.84MB
2.74MB
82.07TMB
1.444MB

LeNet-5

ResNet-18 8%

14%

VGG-19

SedzSeq 56.82 x 1

VI. RELATED WORK

1) Heterogeneous memory. In order to solve the data alloca-
tion problem of multi-core systems, Guo et al. [19] proposed
a polynomial time algorithm, which effectively reduces the
memory access time overhead and energy consumption of the
data allocation problem with exclusive data copies. Zhang
et al. [20] decoupled the two issues of variable partitioning
and task scheduling of the VS-SPM architecture, and pro-
posed High Access Frequency First variable partitioning and
Global View Prediction variable partitioning, and proposed
a loop pipeline scheduling algorithm to effectively improve
the overall throughput and average performance. In order
to minimize the total cost, including energy and latency of
memory access, Qiu et al. [21] proposed a hybrid SPM
architecture that generates high access performance with low
power consumption and Multidimensional Dynamic Program-
ming Data Allocation that reduces memory access latency and
power consumption strategies. And they then designed the
Adaptive Genetic Algorithm for data allocation to minimize
the accuracy lost.

2) Distributed communication backend. In the process of
data packet processing with the traditional TCP/IP technology,
data is copied and moved back and forth between the sys-
tem memory, processor cache, and network controller cache,
causing a heavy burden on the server’s CPU and memory.
RDMA is a host-offload, host-bypass technology. DMA is
used when two or more computers are communicating, and
the memory of one host is directly accessed from the memory
of another host, thereby quickly moving data from one system
to the remote system’s memory. RNIC with an RDMA engine
is responsible for managing the reliable connection between
the source and the target. The advantages of RDMA include
zero-copy, kernel bypass, no CPU involvement, message-
based transactions and scatter/gather entries support. Gloo is
a collective communication library proposed by Facebook,
with an implementation that can be used for system memory



buffers, and another for NVIDIA GPU memory buffers. Gloo
is a collective algorithm that can be executed in parallel on
two or more processes or machines. Multiple machines first
need to find each other to be able to execute across them. Once
they find each other, these machines can establish connections
with each other in a complete network (each machine has
a two-way communication channel to others) or in a subset.
The required connection between the machines depends on
the type of algorithm used. NCCL is a multi-GPU collective
communication library implemented by Nvidia. NCCL is
optimized and compatible with MPI, and can perceive GPU
topology, promote multi-node with multi-GPU acceleration,
maximize bandwidth utilization within the GPU, and make full
use of all available GPUs within multiple nodes or between
cross-border points. NCCL uses a communication ring to move
data and reduce data among all GPUs, and achieve higher
communication speeds on PCle, Nvlink, and InfiniBand.

VII. CONCLUSION

In this paper, GSP improves the speed of existing distributed
communication strategies by 45%~ 120% for deep learning
tasks. To achieve acceleration without reducing the test ac-
curacy, GSP uses a density-based clustering method to group
nodes with similar training speed and sets group parameter
servers and a global parameter server for aggregating the
gradients. We further propose GDS to bridge the iteration
gap among groups and reduce communication overhead. Our
method improves the computing utilization of edge devices,
saves network bandwidth, and improves the acceleration and
scalability of distributed training in heterogeneous clusters.
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